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CBSS: A New Approach for Multi-Agent
Combinatorial Path Finding
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Abstract—Conventional Multi-Agent Path Finding (MAPF)
problems aim to compute an ensemble of collision-free paths
for multiple agents from their respective starting locations to
pre-allocated destinations. This work considers a generalized
version of MAPF called Multi-Agent Combinatorial Path Finding
(MCPF) where agents must collectively visit a large number
of intermediate target locations along their paths before ar-
riving at destinations. This problem involves not only planning
collision-free paths for multiple agents but also assigning targets
and specifying the visiting order for each agent (i.e., target
sequencing). To solve the problem, we leverage Conflict-Based
Search (CBS) for MAPF and propose a novel approach called
Conflict-Based Steiner Search (CBSS). CBSS interleaves (1) the
collision resolution strategy in CBS to bypass the curse of
dimensionality in MAPF and (2) multiple traveling salesman
algorithms to handle the combinatorics in target sequencing, to
compute optimal or bounded sub-optimal paths for agents while
visiting all the targets. We also develop two variants of CBSS that
trade off runtime against solution optimality. Our test results
verify the advantage of CBSS over the baselines in terms of
computing cheaper paths and improving success rates within a
runtime limit for up to 20 agents and 50 targets. Finally, we run
both Gazebo simulation and physical robot tests to validate that
the planned paths are executable.

Index Terms—Path Planning for Multiple Mobile Robots or
Agents, Multi-Agent Path Finding, Traveling Salesman Problem

I. INTRODUCTION

MULTI-AGENT Path Finding (MAPF), as its name sug-
gests, computes a set of collision-free paths for multiple

agents from their respective starting locations to destinations.
This article addresses a generalization of MAPF, referred to as
Multi-Agent Combinatorial Path Finding (MCPF), where the
agents are also required to visit a collection of intermediate tar-
get locations before reaching their destinations while satisfying
additional agent-target assignment constraints (see Fig. 1 for
a toy example). MAPF and its generalizations such as MCPF
arise in applications in logistics [1] and surveillance [2]. For
example, in a hazardous material warehouse, multiple mobile
robots equipped with different sensors need to collectively
measure temperature, humidity and detect potential leakage
of various hazardous chemicals at many predefined target
locations. These robots need to plan their paths such that
each target is visited at least once by a robot and the paths
are collision-free. In addition, robots may carry different
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Fig. 1. An example of the MCPF problem. There are three agents; their initial
locations are (vio, i = 1, 2, 3) and destinations are (vid, i = 1, 2, 3). The two
targets are denoted as vt1 and vt2. The color of the targets and destinations
indicates the assignment constraints, (i.e., the subset of agents that are eligible
to visit the target or destination). For example, the target vt2 can be visited by
either the yellow or the blue agent. A solution (i.e., a collision-free joint path
for the agents) is shown using dashed lines. The circular part of the yellow
path indicates a wait-in-place action of the yellow agent.

sensors, and only a subset of robots may have the sensors to
measure the desired data at a target; this introduces agent-
target assignment constraints that must be respected while
planning paths. Simpler versions of the MCPF without the
robot-robot collision constraints have been addressed in [3],
[4], motivated by unmanned vehicle applications.

Solving MCPF with optimality guarantees is challenging as
it requires handling the difficulty in both MAPF and target
sequencing. If the set of targets is empty and each destination
is pre-assigned to a unique agent, MCPF reduces to MAPF [5],
which is NP-hard [6]. On the other hand, if the collision
between agents are ignored and no assignment constraints
are present, MCPF reduces to a variant of Multiple Traveling
Salesman Problem (mTSP) [3], [7], which is also NP-hard.
As such, solving MCPF to optimality involves simultaneously
addressing the challenges in both MAPF and mTSP.

Unlike MAPF, where ignoring the agent-agent collision
leads to a decoupled shortest path problem for each agent,
in MCPF, ignoring the collision leads to an mTSP where
the agents’ paths are still coupled. In the special case where
there are no assignment constraints, our prior work developed
an approach called MS* [8] based on the subdimensional
expansion framework [9]. In this paper, we present a new
approach called Conflict-Based Steiner Search (CBSS) for
the general case of MCPF, which attempts to bypass the
curses of dimensionality in both mTSP and MAPF to solve
MCPF. CBSS interleaves mTSP and MAPF algorithms by
alternating between (1) generating new target sequences for
the agents, and (2) generating collision-free paths for agents
based on the target sequences, while providing solution quality
guarantees. To compute collision-free paths, CBSS conducts
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a two-level search like CBS [10]: For the high-level search,
CBSS generates a search forest (of multiple trees) where each
tree follows a fixed target sequence for the agents. A key
contribution of this paper is in the generation of the search
forest where we leverage the transformation [3] and K-best
partition [11] methods for the TSP; the transformation method
allows us to find a solution for the mTSP by posing an
equivalent TSP on a larger graph, and the K-best partition
method allows us to incrementally generate K least-cost mTSP
solutions. Each mTSP solution allocates the targets among the
agents and specifies a path (thereby, also fixing the target
sequence) for each agent to visit. For the low-level search,
CBSS runs constrained single-agent path planning to find
a path for each agent following the target sequence while
satisfying the collision avoidance constraints.

We show that CBSS is guaranteed to compute an optimal
or an ϵ-bounded sub-optimal solution, where ϵ is a parameter
that determines the sub-optimality bound of the solution
returned. By varying ϵ from zero to infinity, CBSS moves
along a spectrum from computing an optimal solution with
heavy computational burden to computing a feasible solution
quickly without any theoretic optimality bounds. Furthermore,
when ϵ is infinity, CBSS becomes a “sequential” method that
solves the problem in two sequential stages, where a target
sequence is computed in the first stage, and collision-free
paths are planned for the agents by fixing the target sequence
in the second stage. To intelligently balance between runtime
efficiency and solution quality, we further develop two variants
of CBSS: (i) anytime CBSS, which can quickly compute a
feasible solution and keep improving the quality of the solution
before the runtime budget depletes; (ii) adaptive CBSS, which
adjusts ϵ based on the difficulty of the problem instance.

To verify CBSS, we generate test instances with various
forms of assignment constraints based on an online dataset
[5]. We compare CBSS in various maps with several baselines
including a greedy method, our prior MS* [8], and the afore-
mentioned sequential method. We observe that CBSS com-
putes shorter paths than the greedy method and the sequential
method, and often doubles the success rates in comparison
with MS*. By varying the form of assignment constraints, we
show that CBSS is widely applicable to solve different cases
of MCPF.1 Finally, we carry out both Gazebo simulation and
physical robot experiments to validate that the planned paths
are executable.

To summarize, the main contribution of this article includes:
(i) a novel method to compute K-best solutions for mTSPs;
(ii) CBSS, a new approach to solve MCPF problems with
various assignment constraints; (iii) two variants of CBSS
that balance between runtime efficiency and solution quality
guarantees; and (iv) simulation and physical robot tests that
verify the planned paths are executable. Prior version of this
work has appeared in [12], and this article differs from [12]
by introducing the two variants of CBSS, detailed analysis,
more numerical results against the baselines, and the Gazebo
simulation. The rest of the article is organized as follows. In
Sec. II, we review related problems and methods. We then

1Our implementation is at https://github.com/wonderren/public pymcpf.

formulate the MCPF problem in Sec. III, and introduce the
CBSS approach in Sec. V with proofs in Sec. VI. We present
our test results in Sec. VII. Finally, we conclude and outline
possible future directions in Sec. VIII.

II. RELATED WORK

Multi-Agent Path Finding algorithms tend to fall on a
spectrum from coupled [13] to decoupled [14], trading off
completeness and optimality for scalability. In the middle of
this spectrum lies the popular dynamically-coupled methods
such as subdimensional expansion [9] and Conflict-Based
Search (CBS) [10]. These methods have been improved and
extended [15]–[18]. All of them aim to navigate each agent to
its pre-assigned destination without visiting any intermediate
targets along the path, which differs from MCPF.
The Traveling Salesman Problem (TSP) seeks to find a
shortest path/tour for an agent to visit each vertex in a graph,
and is one of the most well known NP-hard problems [19].
A spectrum of methods have been developed ranging from
exact techniques (branch and bound, branch and price) [19] to
heuristics [20] and approximation algorithms [21], trading off
solution optimality for runtime efficiency.
The Multiple Traveling Salesman Problem (mTSP) [7] is
harder to solve compared to the (single-agent) TSP as the
vertices in the graph must be allocated to each agent in
addition to finding an optimal visiting order of the assigned
targets for each agent. A variant of mTSP that is also related
to this work is the multiple-Steiner TSP2 [23] where the
agents are required to visit a subset of vertices in a graph.
While focusing on allocating and computing the visiting order
of targets for agents, mTSP methods [3], [4], [7], [24] do
not consider the collision avoidance constraints between the
agents. In MCPF, agent-agent collision are also considered.
Combined Target Assignment/Sequencing and Path Find-
ing problems are investigated from different perspectives very
recently [25]–[29]. Closely related to this paper is the CBS-TA
(Task Assignment) algorithm [25], which employs a strategy
of using K-best task assignments to create multiple search
trees. Our CBSS is similar to CBS-TA in terms of using
K-best solutions to construct multiple trees. However, CBSS
differs from CBS-TA by replacing the K-best task assignment
method with a novel K-best sequencing approach. Addition-
ally, since target sequencing (i.e., solving mTSPs) is in general
computationally more expensive than solving task assignment
problems [30], this paper further develops variants of CBSS to
defer the target sequencing until absolutely necessary without
losing solution quality guarantees.

Other methods that combine MAPF with target assignment
and sequencing either consider target assignment only (without
the need for computing visiting orders of targets) [25], [26],
[28], or require computing the visiting order given that each
agent is pre-allocated a set of targets [29], [31], [32]. In

2The origin of Steiner problems are ascribed to mathematician Jakob
Steiner [22] where agents are not required to visit each and every vertex in a
graph. The Steiner TSP has many variants which depend on whether an agent
is required to return to its initial location or end its path at a pre-determined
location; we use Steiner TSP to refer to all these variants.

https://github.com/wonderren/public_pymcpf
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addition, the multi-agent pick-up and delivery problem [33]–
[35], which computes a set of collision-free paths to fulfill
a set of pick-up and delivery tasks, also requires assigning
a sequence of tasks for each agent. The existing approaches
either enumerate all possible task sequences in a brute-force
manner during the path planning in order to ensure solution
optimality [36], which is computational burdensome, or lever-
age heuristics (such as the aforementioned sequential method)
to ensure scalability [34], [37] without solution quality guar-
antees. This paper develops variants of CBSS to enjoy the fast
running speed of the sequential method while providing tight
sub-optimality bounds. In addition, MCPF allows the agents
to be heterogeneous with various assignment constraints.

Finally, some recent work considers precedence constraints
between tasks when planning collision-free paths for the
agents [31], [38]. This paper does not consider precedence
constraints, but focuses on assignment constraints to describe
the heterogeneous capability of the agents.

III. PROBLEM DESCRIPTION

Let index set I = {1, 2, . . . , N} denote a set of N agents.3

All agents move in a workspace represented as an finite undi-
rected graph G = (V,E) where the vertex set V represents
the possible locations for agents and the edge set E ⊆ V ×V
denotes the set of all possible actions that can move an agent
between any two vertices in V . An edge between u, v ∈ V
is denoted as (u, v) ∈ E and the cost of an edge e ∈ E is a
positive real number cost(e) ∈ (0,∞).

In this paper, we use superscript i ∈ I over a variable to
represent the specific agent to which the variable relates (e.g.
vi ∈ V means a vertex corresponding to agent i). Let vio ∈ V
denote the initial vertex (also called the start) of agent i and
Vo denote the set of all initial vertices of the agents. There are
N destination vertices in G denoted by the set Vd ⊆ V . In
addition, let Vt ⊆ V \ {Vo

⋃
Vd} denote the set of M target4

vertices that must be visited by at least one of the agents
along its path. For each v ∈ Vt

⋃
Vd, let fA(v) ⊆ I denote

the subset of agents that are eligible to visit v; these sets are
used to formulate the (agent-target) assignment constraints.

Let πi(vi1, v
i
ℓ) denote a path for agent i between vertices

vi1 and viℓ via a list of vertices (vi1, v
i
2, . . . , v

i
ℓ) in G. Let

g(πi(vi1, v
i
ℓ)) denote the cost of the path, which is the sum

of the costs of all edges present in the path: g(πi(vi1, v
i
ℓ)) =

Σj=1,2,...,ℓ−1cost(v
i
j , v

i
j+1). All agents share a global clock.

Each action of the agents, either wait or move along an edge,
requires one unit of time. Any two agents i, j ∈ I are in
conflict if one of the following two cases happens. The first
case is a vertex conflict (i, j, v, t) where two agents i, j ∈ I
occupy the same vertex v at the same time t. The second
case is an edge conflict (i, j, e, t) where two agents i, j ∈ I
go through the same edge e from opposite directions between
times t and t+ 1.

3Notations k [5], m [31] are also commonly used in the literature to indicate
the number of agents. In this work, we reserve k to denote a general index
and m to denote the index of the intermediate targets.

4The term “targets” in this work represent static target locations, which are
also called waypoints within the robotics community.

The MCPF problem aims to find a set of conflict-free paths
for the agents such that (1) each target v ∈ Vt is visited at least
once by some agent in fA(v), (2) the path for each agent i ∈ I
starts at its initial vertex and terminates at a unique destination
u ∈ Vd such that i ∈ fA(u), and (3) the sum of the cost of
the paths reaches the minimum.

Remark 1. The notion that an agent i “visits” a target v
means (i) there exists a time t such that agent i occupies v
along its path, and (ii) the agent i claims that v is visited. In
other words, if a target v is in the middle of the path of agent i
and agent i does not claim v is visited, then v is not considered
as visited. Additionally, a visited target v can appear in the
path of another agent. In this paper, when we say an agent
or a path “visits” a target, we always mean the agent “visits
and claims” the target.

Remark 2. MCPF generalizes several existing problems.
When M = 0 (i.e., no target is present) and fA maps each
destination to an agent, MCPF reduces to the standard MAPF.
When fA(v) = I,∀v ∈ Vt

⋃
Vd, we get the fully anonymous

version of MCPF which has been solved by our prior work
using MS* [8]. Finally, if the conflict between agents is
ignored, and the destination of each agent is the same as its
starting location (which is often called a “depot” in TSP),
then MCPF reduces to a variant of mTSP [3].

IV. REVIEW OF CONFLICT-BASED SEARCH

Conflict-Based Search (CBS) [10] is a two-level search
algorithm. On the high-level, every node P is defined as a
tuple of (π, g,Ω), where:

• π = (π1, π2, . . . , πN ) is a joint path that connects the vio
and vid for each agent i ∈ I .

• g is the scalar cost value of π (i.e., g = g(π) =
Σi∈Ig(π

i)).
• Ω is a set of (collision) constraints.5 A constraint is

of form (i, v, t) (or (i, e, t)), which indicates agent i is
forbidden from occupying vertex v (or traversing edge e)
at time t.

CBS constructs a tree T with the root node Proot =
(πo, g(πo), ∅), where the joint path πo is constructed by
running the low-level (single-agent) planner, such as A*, for
every agent respectively with an empty set of constraints
while ignoring any other agents. Proot is added to OPEN, a
queue that prioritizes nodes based on their g-values from the
minimum to the maximum.

In each search iteration, a node P = (π, g,Ω) with the min-
imum g-value is popped from OPEN for expansion. To expand
P , every pair of paths in π is checked for a vertex conflict
(i, j, v, t) (and an edge conflict (i, j, e, t)). If no conflict is
detected, π is conflict-free and is returned as a solution (i.e.,
a conflict-free joint path) and this solution is guaranteed to be
optimal (i.e., has the minimum cost). Otherwise, the detected
conflict (i, j, v, t) is split into two constraints (i, v, t) and
(j, v, t) respectively and two new constraint sets Ω

⋃
{i, v, t}

and Ω
⋃
{j, v, t} are generated. (Edge conflict is handled in

5For the rest of the paper, we refer to collision constraints simply as
constraints, which differs from the aforementioned assignment constraint.
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a similar manner and is thus omitted.) Then, for the agent i
in each split constraint (i, v, t) and the corresponding newly
generated constraint set Ω′ = Ω

⋃
{i, v, t}, the low-level

planner is invoked to plan a minimum cost path π′i of agent i
subject to all constraints related to agent i in Ω′. The low-level
planner typically runs A*-like search in a space-time graph
with constraints marked as inaccessible vertices and edges
in this space-time graph. After the low-level planning, a new
joint path π′ is formed by first copying π and then replacing
agent i’s path πi with π′i. Finally, for each of the two split
constraints, a corresponding new node is generated and added
to OPEN for future expansion. CBS [10] is guaranteed to find
a minimum cost solution for a solvable MAPF problem.

V. CONFLICT-BASED STEINER SEARCH

A. Basic Concepts and Overview

In MCPF, a path for agent i may visit a sequence
of targets before reaching its destination. Let γi =
{vio, ui

1, u
i
2, . . . , u

i
ℓ, v

i
d} denote a target sequence visited by

agent i ∈ I where vio is the initial vertex of agent i, ui
j

is the jth target visited by agent i with j = 1, · · · , ℓ, and
vid ∈ Vd is a destination. Let γ = {γi : i ∈ I} denote a joint
(target) sequence, which is a collection of target sequences
of agents. The cost incurred in traveling between any two
subsequent vertices u, v ∈ γi is simply the minimum-cost
path cost between u and v in G. The cost of a target sequence
cost(γi) is defined as the total cost incurred in traversing
all the vertices in γi. Similarly, the cost of a joint sequence
is defined as cost(γ) := Σi∈Icost(γ

i). Note that cost(γ)
is computed ignoring all the conflicts between the agents.
Following the same notations as in CBS, let P = (π, g,Ω)
denote a node for CBS search. We say a path πi follows γi, if
πi visits all the assigned targets in the same order as specified
in γi. Similarly, a joint path π follows γ, if each πi ∈ π
follows the corresponding γi ∈ γ.

Conflict-Based Steiner Search (CBSS) conducts a two-level
search similar to CBS, which is conceptually visualized in
Fig. 2. The key differences in the CBSS as compared to CBS
are in the high-level search. Specifically, CBSS constructs a
search forest6 (rather than a single search tree) where each tree
Tj in the forest corresponds to a joint sequence γ∗

j that is fixed.
In other words, the joint path π for any node P = (π, g,Ω)
within the tree Tj follows the same joint sequence γ∗

j . The joint
sequences {γ∗

1 , γ
∗
2 , γ

∗
3 · · · } are generated using a sequencing7

procedure while ignoring any conflict between agents, which
ensures that the cost of the joint sequences are monotonically
non-decreasing: cost(γ∗

1) ≤ cost(γ∗
2) ≤ cost(γ∗

3 ) . . . . Given a
joint sequence γ∗

j and its corresponding tree Tj , conflicts are
resolved through the same conflict splitting process as in CBS.
Similar to the low-level search in CBS, the low-level search
in CBSS iteratively plans a path for agent i from one vertex

6CBSS is not the first method that extends CBS to a search forest. For
example, CBS-TA [25] uses a search forest to combine task assignment and
path finding. In MO-CBS [39], a search forest is constructed to find the Pareto-
optimal front for multi-objective MAPF problems.

7In Fig. 2, this refers to the K-best sequencing procedure. Here, K is a
parameter that specifies the number of the cheapest K solutions to be found.

to another as specified in γi by using A*-like search, while
satisfying the constraints.

Initially, CBSS starts with a joint sequence γ∗
1 . A node

corresponding to γ∗
1 is created and forms the root node of

T1. If the joint path πo in this root node does not have any
conflict between agents, then the search terminates and outputs
πo, which is an optimal solution to MCPF. If πo has a conflict,
then two new nodes are created as in CBS, and are added to
OPEN. Then, during the search, a node P = (π, g(π),Ω) is
popped from OPEN. If g(π) is no larger than cost(γ∗

2) (i.e.,
the cost of a second best joint sequence), the search continues
to check for a conflict in π and expand P . Otherwise (i.e., γ∗

2 is
cheaper than g(π)), a new tree denoted by T2 is then created
and the root node of γ∗

2 is added to OPEN, and the search
continues. Since cost(γ∗

1 ) is a lower bound to the optimal
solution cost of MCPF (because γ∗

1 ignores conflicts), and
that the nodes are systematically generated and expanded in
a best-first search manner, CBSS can find an optimal solution
to the MCPF (as proved in Sec. VI).

There are some crucial parts to this high-level search in
CBSS. Generating a set of joint sequences with monotonically
increasing costs is non-trivial, especially for a mTSP with
agent-target assignment constraints. Formally, it requires solv-
ing a K-best Multi-Depot Multi-Terminal Hamiltonian Path
Problem, which is referred to as a K-best sequencing problem
for simplicity. Currently, there is no existing algorithm to solve
this (multi-agent) K-best sequencing problem. We propose the
following approach to solve it. We first leverage a transfor-
mation method [3] that can convert a mTSP to a (single-
agent) TSP, then leverage a partition method [11] to solve the
(single-agent) K-best TSP, and finally transform the obtained
solutions back to the solutions to the original (multi-agent) K-
best sequencing problem. Here, the transformation method [3]
guarantees solution optimality while being able to leverage
the state-of-the-art single-agent TSP solvers (Sec. V-C). The
partition method [11] solves a K-best TSP by systematically
forcing a solution to include some edges and exclude some
other edges to find the desired K-best solutions (Sec. V-D).

As finding an optimal solution for MCPF can be computa-
tional expensive, we also provide a way to find bounded sub-
optimal solutions which can handle more agents and targets.
Specifically, the user can specify an approximation parameter
ϵ prior to solving the problem and the proposed approach will
find a solution (if one exists) whose cost is at most (1+ϵ) times
the optimum. With that in hand, we further develop anytime
CBSS and adaptive CBSS that can trade off between solution
quality and computational time.

B. CBSS Algorithm

Let GT = (VT , ET , CT ) denote a target graph, which
is a complete undirected graph with the vertex set VT =
Vo

⋃
Vt

⋃
Vd (|VT | = 2N + M ) and edge set ET . Here,

CT represents a symmetric cost matrix of size (2N +M) ×
(2N + M) that defines the cost of each edge in ET . Each
edge (u, v) ∈ ET represents a minimum cost path connecting
u, v in the (workspace) graph G ignoring conflicts and the
corresponding entry CT (u, v) stores the cost of that path. Note
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Fig. 2. A conceptual visualization of CBSS. Each tree Tk indicates that: given
a joint sequence γ∗

k , CBSS plans a joint path by following γ∗
k and leverages

Conflict-Based Search (CBS) to resolve conflicts between agents along their
paths. During the CBS search, when the cost of the node to be expanded
exceeds a threshold, the next-best joint sequence is created by using a K-best
sequencing procedure. CBSS conducts the search in a best-first manner, which
provides solution quality guarantees.

Algorithm 1 Pseudocode for CBSS
1: Compute GT = (VT , ET , CT )
2: γ∗

1 ← K-best-Sequencing(GT ,fA,K = 1)
3: Ω← ∅
4: π, g ← LowLevelPlan(γ∗

1 , Ω)
5: Add Proot,1 = (π, g,Ω) to OPEN
6: while OPEN is not empty do
7: Pl = (πl, gl,Ωl)← OPEN.pop()
8: Pk = (πk, gk,Ωk)← CheckNewRoot(Pl, OPEN)
9: cft← DetectConflict(πk)

10: if cft = NULL then
11: return πk

12: Ω← GenerateConstraints(cft)
13: for all ωi ∈ Ω do
14: Ω′

k = Ωk ∪ {ωi}
15: π′

k, g
′
k ← LowLevelPlan(γ(Pk), Ω′

k)
16: // In this LowLevelPlan, only agent i’s path is planned.
17: Add P ′

k = (π′
k, g

′
k,Ω

′
k) to OPEN

18: return failure

that GT is a graph where the edge cost satisfies the triangle
inequality, which will be used later in Sec. VI.

The CBSS algorithm is shown in Alg. 1. CBSS first finds
a minimum cost joint sequence γ∗

1 (lines 1-2) in GT . CBSS
then invokes the low-level search (lines 3-4) for all agents
i ∈ I with an empty set of constraints, which computes π
that follows γ∗

1 , as well as the cost value g(π). A root node
Proot,1 is then created and added to OPEN, a priority queue
where nodes are prioritized based on their g-values from the
minimum to the maximum.

In each iteration of the high-level search (lines 6-17), a node
Pl with the least g-value is popped from OPEN. A procedure

CheckNewRoot (Alg. 3) is invoked, which compares the cost
gl of node Pl against some threshold to decide whether the
next root node needs to be created. This threshold is based on
both the cost of the current joint sequence, a next-best joint
sequence, and a hyper-parameter ϵ that determines the sub-
optimality bound of the computed solution, which is presented
in Sec. V-E.

• If the next root node does not need to be created, the
input node Pl is returned by CheckNewRoot.

• If the next root node (denoted as the r-th root Proot,r)
needs to be created, a next-best joint sequence γ∗

r is
computed by using the K-best sequencing procedure with
K = r. The corresponding joint path as well as the path
cost is computed by calling LowLevelPlan(γ∗

r , ∅), which
runs the low-level search to find a path for each agent
by following γ∗,i

r ∈ γ∗
r . All these paths together form a

joint path that follows γ∗
r . The resulting new root node

Proot,r is then returned by CheckNewRoot. Additionally,
Pl (i.e., the input node to CheckNewRoot) is added back
to OPEN for future expansion.

The node returned by CheckNewRoot is denoted as Pk and
the joint path πk in Pk is then checked for a conflict (line 9).
If no conflict is detected, CBSS terminates and πk is returned.
Otherwise, CBSS splits the detected conflict (same as in CBS)
by generating two constraints. Here, we abuse the notation to
simplify our exposition: let γ(Pk) (line 15) denote the joint
sequence that πk (the joint path in Pk) follows. This can be
computed by first finding the root node Proot,r of the tree
to which Pk belongs, and then returning the joint sequence
γ∗
r related to Proot,r. For each newly generated constraint ωi,

CBSS updates the constraint set (line 14) and invokes the low-
level search for agent i (line 15) to recompute its path that
satisfies the new set of constraints. Finally, the newly generated
nodes are added to OPEN for future expansion (line 17).

C. Transformation Method for Sequencing

We now present our transformation method that takes the
target graph GT and assignment constraints fA as input, and
returns a minimum cost joint sequence. Our approach is based
on the transformation used in [3] for mTSP, and the main
idea is to convert a mTSP into a TSP while ensuring that the
optimal solution to the generated TSP can be converted back to
an optimal solution to the original mTSP. Our transformation
method differs from the one in [3] as follows: (1) destinations
are explicitly introduced and they can be different from agents’
initial vertices; (2) assignment constraints are introduced in
this paper; (3) the concept about the “heterogeneous costs” in
[3] is not relevant in this paper and thus removed. The main
steps in our transformation method are the following:

• Step-1 converts the target graph GT into a directed
transformed graph GTF (subscript TF stands for “trans-
formation”) based on the assignment constraints fA, and
defines the edge costs in GTF with a set of rules which
are elaborated later;
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Fig. 3. A visualization of the transformation method for the toy example in Fig. 1. (a) shows the transformed graph GTF , where edges from the initial vertices
and the edges connected to destinations are omitted to make the plot readable. (b) shows a TSP tour {v1o , v1t2, v2t2, v1d, v

2
o , v

2
t1, v

3
t1, v

1
t1, v

2
d, v

3
o , v

3
d, v

1
o} in

GTF . (c) shows the computed joint sequence γ = {γi, i = 1, 2, 3}, where γ1 : {v1o , v1t1, v1t2, v1d}, γ2 : {v2o , v2t1, v2d}, γ3 : {v3o , v3d}.

• Step-2 invokes an existing asymmetric TSP8 solver to
compute a minimum cost (single-agent) tour in GTF

(i.e., a path that starts and ends at the same vertex while
traversing all vertices in GTF exactly once);

• Step-3 divides the (single-agent) tour into N segments by
removing some special edges (that are defined in Step-
1) in the tour, and each segment corresponds to a target
sequence for an agent.

We now elaborate these three steps and provide a toy
example in Fig. 3. Step-1 generates the directed graph GTF =
(VTF , ETF , CTF ) based on GT and fA. The vertex set is
defined as VTF := Vo

⋃
U , where U is an “augmented” set

of targets and destinations: for each v ∈ Vt

⋃
Vd, a copy

vi of v for agent i is made, if i ∈ fA(v). The purpose
of this augmentation is to suitably represent the assignment
constraints. Let U i denote the set of all copies of targets
and destinations that agent i is eligible to visit. Clearly,
U =

⋃
i∈I U

i. Additionally, let U(v), v ∈ Vt

⋃
Vd denote

an ordered list of all copies vi of vertex v where the order is
specified by sorting i from the smallest to the largest. Based
on this order in U(v), let Next(vi), vi ∈ U(v) denote the
next copy of v in U(v) and let Prev(vi) ∈ U(v) denote
the previous copy of v in U(v). As an edge case, when
vi is the last in U(v), let Next(vi) indicate the first copy
in U(v); And when vi is the first in U(v), let Prev(vi)
indicate the last copy in U(v). As an example, in Fig. 3 (a),
U = {v1t1, v2t1, v3t1, v1t2, v2t2, v1d, v2d, v3d} and U2 = {v2t1, v2t2}.
For target vt1, U(vt1) = {v1t1, v2t1, v3t1} (an ordered list) with
Next(v3t1) = v1t1 and Prev(v1t1) = v3t1.

The edge set ETF consists of several different types of
directed edges. The cost value of these edges are stored in
the corresponding cost matrix CTF .

• Type-1 Edges: the start vio of agent i is connected to
any other vertices ui ∈ U i with a cost value equal to
CT (v

i
o, u

i).
• Type-2 Edges: the copy of each destination of agent

i is connected to the start of agent (i + 1) for i =
1, 2, . . . , (N−1) with an zero-cost edge, and the copy of
each destination of agent i = N is connected to v1o , the

8Asymmetric TSP means that the graph is directed and cost(u, v) may not
be the same as cost(v, u) for any two vertices u, v in the graph. We use
“edges” as opposed to “arcs” when referring to edges in GTF for simplicity.

initial vertex of agent i = 1, with zero-cost edges. The
intuition behind these zero-cost edges is to make sure the
minimum cost tour of GTF uses these zero-cost edges to
connect two subsequent agents’ destinations and initial
vertices, and the tour can be divided into N segments by
removing these zero-cost edges later.

• Type-3 Edges: for each v ∈ Vt

⋃
Vd, an zero-cost edge

is connected from vi ∈ U(v) to Next(vi). We explain
the intuition after introducing the Type-4 edges.

• Type-4 Edges: for each v ∈ Vt

⋃
Vd and for each agent

i ∈ fA(v), an edge is connected from Prev(vi) to agent
i’s copy ui of all other targets and destinations (i.e., ∀ui ∈
U i, ui ̸= vi) with cost Z+CT (v

i, ui), where Z is a large
constant number that is an over-estimate of the optimum
(i.e., the cost of the minimum cost joint sequence). For
example, Z = 2(N+M)max(u,v)∈ET

CT (u, v). In Fig. 3
(a), take v1t2 as an example: i = 1, Prev(v1t2) = v2t2, and
“agent-i’s copies of all other targets and destinations”
are {v1t1, v1d}; Thus, v2t2 is connected to each of {v1t1, v1d}.
Note that in Fig. 3 (a), all edges connected to destinations
are omitted to make the figure readable.

The intuition behind the Type-3, 4 edges and their costs
is to ensure that when a minimum cost tour in GTF visits a
copy vertex vi of v ∈ Vt

⋃
Vd, the tour must visit all other

copies vj , j ̸= i before arriving at the copy ui of another
vertex u ∈ Vt

⋃
Vd, u ̸= v. Specifically, Type-3 edges have

zero-cost to encourage a minimum cost tour to visit all copies
in U(v) for some v ∈ Vt

⋃
Vd in a “loop” before visiting

another vertex. Without the large cost Z for the Type-4 edges,
it may be more expensive sometimes to visit all the copies
in U(v) one after another in a loop, and a cheaper tour may
break from the loop, visit another nearest copy in U(u) for
some u ∈ Vt

⋃
Vd, u ̸= v, and get back to the loop at some

other copy in U(v). With Z, a minimum cost tour uses totally
(|Vt| + |Vd|) = (M + N) edges to enter U(v) exactly once
for each v ∈ Vt

⋃
Vd, and any tour that breaks from the loop

must use more than (M + N) edges, which cannot lead to
a minimum cost tour. By doing so, the copies of each v ∈
Vt

⋃
Vd are always visited one after another in a loop, and

this loop can later be removed from the tour to extract target
sequences (Fig. 3 (b) and (c)).

We have finished the presentation about Step-1, which
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generates a transformed graph GTF . In Step-2, a regular
(single-agent) asymmetric TSP solver is invoked on GTF and
a minimum cost tour is computed. As shown in Fig. 3 (b), a
minimum cost tour is visualized for the toy example in Fig. 1.
In Step-3, the computed tour is post-processed to obtain the
corresponding joint sequence. First, all zero-cost edges from
destinations to starts are removed, which breaks the tour into
N segments. (In Fig. 3 (b), the dotted lines, which denote
the zero-cost edges, are removed.) Second, the copies of the
same targets are shortcut. (In Fig. 3 (b), the dashed lines in
yellow and blue are shortcut.) Third, the cost of the resulting
joint sequence can be obtained by taking the sum of the cost of
edges in the joint sequence based on CT (as opposed to CTF ).
The resulting joint sequence for the toy example is shown
in Fig. 3 (c). The property of this transformation method is
summarized with the following theorem. The proof in [40] can
be readily adapted to the transformation in this paper.

Theorem 1. Given GT and fA, the transformation method
computes a minimum cost joint sequence that visits all tar-
gets and ends at destinations while satisfying all assignment
constraints.

Remark 3. In MCPF, if all targets and destinations are
anonymous (i.e., fA(v) = I, ∀v ∈ Vt

⋃
Vd), then this fully

anonymous MCPF problem is called a MSMP (Multi-Agent
Simultaneous Multi-Goal Sequencing and Path Finding) prob-
lem in [8]. For MSMP, the transformation can be simplified:
There is no need to make copies of targets and destinations
for each eligible agent and the edge of the third type is
unnecessary. Details can be found in [3], [8].

D. K-best Joint Sequences

To find a set of K cheapest joint sequences, the main idea
here is to first transform the multi-agent problem into an equiv-
alent single-agent problem (i.e., a TSP) as described in the
previous section, and then leverage the partition method [11],
[41] to solve a K-best TSP to find K cheapest tours. The K-
best TSP method in this section replaces the Step-2 in the
transformation method in the previous section. Specifically,
the Step-2 in the previous section finds a minimum cost tour
in GTF while the method in this section finds K-best tours in
GTF . To this end, we first introduce the Restricted TSP that
is used in the partition method.

Definition 1 (Restricted TSP (rTSP)). Given a directed graph
G′ = (V ′, E′, C ′), let Ie, Oe ⊆ E′ denote two disjoint subsets
of edges in G′, an rTSP seeks to find a minimum cost tour τ∗

such that Ie ⊆ τ∗ ⊆ E′\Oe.9

Intuitively, an rTSP is defined by two sets of edges Ie, Oe,
and requires computing a minimum cost tour with all edges in

9In this paper, G′ is always the same as GTF . We use G′ instead of GTF

to highlight that the partition method is not limited to GTF . Also note the
difference between a set of edges Ie and the index set I representing all
agents. Additionally, there are two possible definitions of the rTSP problem:
one requires finding a tour that visits each vertex in G′ at least once (i.e.,
with repetition) and another that requires visiting each vertex exactly once
(i.e., without repetition). We show in Sec. VI-B that these two versions are
equivalent within the framework of CBSS. We now focus on finding a tour
that visits each vertex exactly once.

Algorithm 2 Pseudocode for K-best-TSP
1: Ie(1)← ∅, Oe(1)← ∅
2: τ∗(1)← rTSP(G′, Ie(1), Oe(1))
3: Add (Ie(1), Oe(1), τ

∗(1)) into OPENrTSP

4: S ← ∅
5: while OPENrTSP not empty do
6: (Ie(k), Oe(k), τ

∗(k))← OPENrTSP .pop()
7: Add τ∗(k) into S
8: if k = K then
9: return S

10: Index the edges in τ∗(k) as {e1, e2, . . . , eℓ}
11: for all p ∈ {1, 2, . . . , ℓ} do
12: Ie(k + 1)[p]← Ie(k)

⋃
{e1, e2, . . . , ep−1}

13: Oe(k + 1)[p]← Oe(k)
⋃
{ep}

14: τ∗(k+1)[p]← rTSP-Solve(G′, Ie(k+1)[p], Oe(k+1)[p])
15: if τ∗(k + 1)[p] is feasible then
16: Add (Ie(k + 1)[p], Oe(k + 1)[p], τ∗(k + 1)[p]) to

OPENrTSP

17: return failure

Fig. 4. An illustration of the partition process in Alg. 2. (a) shows a minimum
cost tour for a TSP, whose edges are indexed. To compute the second best
tour (K = 2), (b), (c) and (d) show the Ie and Oe sets of the inner for-loop
iterations (lines 11-16 in Alg. 2) with p = 1, 2, 3 respectively. The iteration
p = 4 is omitted.

Ie included and the edges in Oe excluded. To solve an rTSP,
one can first obtain a modified graph G′′ by changing the cost
of edges in Ie to a relatively small value (so that they must be
part of a minimum cost tour), while removing the edges in Oe

by modifying the cost of the edges to large positive values (so
that the edges cannot be part of a minimum cost tour). Then
a regular TSP solver can be invoked on G′′ to solve rTSP. Let
τ∗ ← rTSP-Solve(G′, Ie, Oe) denote this solution process.

The partition method [11] solves a K-best TSP via a best-
first search by iteratively partitioning the set of possible tours
while finding a minimum cost tour in each partitioned subset.
As shown in Alg. 2, Ie(k), Oe(k) and τ∗(k) keep track of
Ie, Oe and τ∗ as a function of the iteration number (k) of the
algorithm. To initialize, Alg. 2 computes a minimum cost tour
τ∗(1) in G′ with Ie(1), Oe(1) being empty sets (lines 1-4).
The tuple (Ie(1), Oe(1), τ

∗(1)) with tour cost cost(τ∗(1)) is
then added to OPENrTSP , a priority queue where tuples are
prioritized based on their tour costs. The set of K-best tours
S is initialized to be an empty set.
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In the k-th while-iteration, a tuple (Ie(k), Oe(k), τ
∗(k)) is

popped from OPENrTSP (line 6). The tour τ∗(k) is a k-th
best tour and is added to S (line 7). If k is equal to K, then
S contains the K-best solutions and the algorithm terminates
(lines 8-9). Otherwise, the algorithm continues by indexing the
edges in τ∗(k) from 1 to ℓ, where ℓ is the number of edges in
the tour. Then, Alg. 2 iterates all edges to partition the set of
remaining possible tours and generate a corresponding rTSP
for each partition. We use [p], p ∈ {1, 2, . . . , ℓ} to denote the
p-th for-loop iteration (line 11). For each edge ep, the subset
of edges {e1, e2, . . . , ep−1} are added to the set Ie(k) to form
a new set of edges (denoted as Ie(k + 1)[p]) that must be
included into the tour. Additionally, a new set of edges to
be excluded (denoted as Oe(k + 1)[p]) is formed by taking
the union of {ep} and Oe(k) (line 13). An illustration can be
found in Fig. 4. Alg. 2 then solves the resulting rTSP defined
by Ie(k+ 1)[p] and Oe(k+ 1)[p] to obtain tour τ∗(k+ 1)[p].
In practice, we set the cost of edges in Oe to a large number,
and these edges may still be used. Therefore, Alg. 2 verifies
the feasibility of τ∗(k + 1)[p], where feasibility means the
tour includes all edges in Ie and excludes all edges in Oe.
If τ∗(k + 1)[p] is feasible, Alg. 2 adds the resulting tuple to
OPENrTSP (lines 14-16).

Theorem 2. Given a graph G′ = (V ′, E′, C ′), Alg. 2 finds a
set of K-best tours, if there exists one.

The correctness of this theorem relies on that (i) the partition
is complete, and (ii) the search runs in a best-first manner. We
provide an intuitive explanation about the completeness of the
partition, which complements the analysis in [11], [41]. Given
a minimum cost tour τ∗, index the edges in τ∗ from 1 to
ℓ. For an arbitrary tour τ ′ that is different from τ∗, we can
introduce a binary vector b ∈ Bℓ\1 of length ℓ to indicate if
each edge in τ∗ is included in τ ′, where B={0, 1} and 1 is
a vector with all component being one. Specifically, the j-th
component b(j) is equal to one (or zero) if the j-th edge in
τ∗ is included in (or excluded from) the tour τ ′. Obviously,
b cannot be equal to 1, since τ ′ must be different from τ∗.
Alg. 2 partitions Bℓ\1 into the following sets that are mu-
tually disjoint to each other: {(0,B, · · · ,B), (1, 0,B, · · · ,B),
(1, 1, 0,B, · · · ,B), · · · ,(1, 1, · · · , 1, 0)}, where B means the
corresponding component can be either zero or one. To show
this partition is complete, we need to show that any b ∈ Bℓ\1
belongs to one of the sets. We show it as follows: for an
arbitrary b ∈ Bℓ\1, find the first component in b that is zero.
Without losing generality, say b(j) = 0 with j being a specific
number ranging from 1 to ℓ. Then the j-th set in the above
partition contains b. Therefore, the partition is complete.

Remark 4. Solving a K-best TSP is computationally expen-
sive. In a iteration of the while loop (lines 5-16), Alg. 2 needs
to solve ℓ rTSPs. To find K-best tours, the algorithm requires
solving 1 + (K − 1)ℓ rTSPs. For implementation, a couple
of techniques can be used to improve the runtime efficiency,
which is discussed in Sec. V-F.

Algorithm 3 Pseudocode for CheckNewRoot
1: Input: Pl = (πl, gl,Ωl), OPEN
2: r ← number of roots generated so far.
3: if gl ≤ (1 + ϵ)cost(γ∗

r ) then
4: return Pl

5: γ∗
r+1 ← K-best-Sequencing(GT , fA,K = r + 1)

6: π, g(π)← LowLevelPlan(γ∗
r+1, ∅)

7: Proot,r+1 = (π, g(π), ∅)
8: if gl ≤ g(π) then
9: Add Proot,r+1 to OPEN

10: return Pl

11: Add Pl to OPEN
12: return Proot,r+1

E. Generation of New Root Nodes

To find an optimal solution to MCPF, CBSS determines
whether a new root node needs to be created in CheckNewRoot
(line 8 in Alg. 1). Let r denote the number of roots that have
been generated during the search. Note that each root node
corresponds to a joint sequence and all joint sequences are
generated with monotonically non-decreasing costs. Thus γ∗

r

is a joint sequence with the largest cost value cost(γ∗
r ) among

all joint sequences that have been computed. Let ϵ ∈ [0,∞]
denote a sub-optimality bound, a hyper-parameter of CBSS:
When ϵ = 0, CBSS finds an optimal solution; When ϵ = ∞,
there is no sub-optimality bound on the solution returned.

As shown in Alg. 3, CheckNewRoot first checks if the
cost of the input node exceeds (1 + ϵ)cost(γ∗

r ). If not, Pl is
returned (for expansion) as the cost of Pl is still within the sub-
optimality bound. Otherwise, CheckNewRoot generates a next-
best joint sequence γ∗

r+1 via procedure K-best-Sequencing
(line 5). With γ∗

r+1, LowLevelPlan computes a joint path π
and its cost g(π) by following γ∗

r+1, and the next root node
Proot,r+1 is created. Finally, line 8 checks if the cost of the
input node Pl exceeds the cost of the new root node Proot,r+1

and the cheaper node is returned for expansion.
As shown in Alg. 1, CBSS invokes CheckNewRoot before

the expansion of a node to defer the expensive computation
of a next-best joint sequence until needed. CBSS intentionally
defers this computation by first comparing the cost of the
node to be expanded against the sub-optimality bound and
then computing a next-best joint sequence until absolutely
necessary. Finally, it is worthwhile to note that, when ϵ =∞,
CBSS becomes a “sequential” method in a sense that the
minimum cost joint sequence γ∗

1 is computed at first and then
CBSS plans a joint path following γ∗

1 without generating a
second best joint sequence (since ϵ = ∞). A conflict-free
joint path may still be found but no optimality guarantee can
be provided (i.e., a bound of ∞).

F. Discussion on Implementation

A few techniques can be introduced in the implementation
of CBSS. To improve the computational efficiency of Alg. 2,
first, GTF (which is the graph G′ in Alg. 2) contains special
types of edges (the second and the third type of edges as
defined in Sec. V-C), which are auxiliary edges that help with
the transformation. These edges can be skipped during the iter-
ations (lines 11-16 in Alg. 2) to improve the computational ef-
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ficiency. For example in Fig. 3, only the solid edges in Fig 3 (b)
(i.e., {(v1o , v1t2), (v2t2, v1d), (v2o , v2t1), (v1t1, v2d), (v3o , v3d)}) need to
be indexed and iterated for partition. Second, Alg. 2 can
be implemented in an incremental fashion by reusing the
OPENrTSP and S computed in the K-th call of Alg. 2 in the
future (K+1)-th call of Alg. 2. In other words, when a set of
K-best tours is computed and a (K+1)-th best tour is required,
the search process can be resumed by reusing OPENrTSP and
S. This incremental version is helpful for CBSS since CBSS
always requires a next-best joint sequence incrementally.

Additionally, the low-level search of CBSS needs to plan
a path between each pair of subsequent vertices in a target
sequence (line 4, 15 in Alg. 1). These paths can be cached and
re-used for future low-level search as well as the generation
of the target graph GT .

G. Anytime CBSS

Finding a next-best joint sequence is often computationally
expensive as it requires solving many rTSPs. A large ϵ can
defer the generation of a next-best joint sequence during
the CBSS search and thus improve the search efficiency.10

However, a large ϵ means a loose sub-optimality bound. We
therefore propose anytime CBSS: it begins by using a large ϵ
so that CBSS can quickly find a solution, and then continues
the search with a decreased ϵ to improve solution quality
until a runtime limit is reached. Specifically, anytime CBSS
modifies line 11 in Alg. 1 as follows. Instead of immediately
returning the solution that is found, anytime CBSS stores
the solution, reduces epsilon and continues the search until
timeout. When timeout, among all solutions that are found,
the one with the minimum cost is returned.

H. Adaptive CBSS

Adaptive CBSS seeks to allow CBSS to choose ϵ based
on the difficulty of computing joint sequences for a specific
problem instance. Given an instance, if computing target
sequences is computationally expensive, adaptive CBSS uses
a large ϵ to defer the generation of a next-best joint sequence
during the CBSS search in order to find a solution within the
runtime limit. If computing joint sequences is fast, adaptive
CBSS chooses a small ϵ to find a solution with a tight sub-
optimality bound. Specifically, adaptive CBSS differs from
the regular CBSS by adding an additional line after line 2
in Alg. 1, where ϵ is set based on the runtime of line 2. Note
that line 2 computes a minimum cost joint sequence γ∗

1 , whose
runtime is used as an indicator of the difficulty for computing
target sequences. We present numerical results about both the
anytime and adaptive CBSS in Sec. VII-E.

VI. ANALYSIS

A. Solution Optimality

We begin by providing an intuitive explanation about the so-
lution optimality guarantee and show the proof in the ensuing

10Note that a larger ϵ is not guaranteed to expedite the search, from the
numerical results in Sec. VII-C, we observe that CBSS with a large ϵ tends
to solve more instances within a fixed runtime limit.

paragraphs. The CBSS search proceeds along two directions:
CBSS either resolves conflicts between agents within a tree,
or generate a next-best joint sequence to create the root node
of a new tree. Along either direction, the cost of the node
to be expanded is monotonically non-decreasing. In addition,
the entire search is conducted in a best-first manner (i.e., by
iteratively selecting the minimum cost node from OPEN for
expansion), which ensures that the first solution returned is
optimal (or bounded sub-optimal).

We now prove that CBSS is guaranteed to find a solution if
one exists (Theorem 3) and the returned solution is guaranteed
to be an ϵ-bounded sub-optimal solution (Theorem 4). A
MCPF problem instance is feasible if there exists a solution.

Theorem 3. For a feasible MCPF problem instance, when
ϵ <∞, CBSS returns a solution.

Proof. During the search, CBSS either generates a new root
node with monotonically non-decreasing costs (Theorem 2),
or expands a node within a certain tree. There is a finite
number of possible joint sequences in a finite graph and thus
a finite number of root nodes to be generated. Additionally,
within each tree, CBSS expands nodes with non-decreasing
costs, and there is only a finite number of possible nodes
with costs no larger than a certain cost value [10]. If the
given instance is feasible, the correpsonding solution must
have a finite cost. Therefore, after popping all these nodes
from OPEN for expansion, CBSS terminates in finite time
and returns solution, i.e., a conflict-free joint path that visits all
targets and ends at destinations while satisfying the assignment
constraints (Theorem 1).

Theorem 4. Let g∗ denote the cost value of an optimal
solution for a MCPF problem instance. When ϵ < ∞, CBSS
is guaranteed to return a solution π with cost value g that is
no larger than (1 + ϵ)g∗.

Proof. Let P ∗ = (π∗, g∗,Ω∗), P = (π, g,Ω) denote the nodes
corresponding to g∗ (the optimal solution cost) and g (the cost
of the solution returned by CBSS) respectively. Let Proot,r′ =
(π′, g′,Ω′) denote the root node of the tree that contains P ∗,
and let r denote the number of root nodes that have been
generated. When P is expanded and solution π is returned,
the root node Proot,r′ is either (1) generated (i.e., r′ ≤ r) or
(2) not generated (i.e., r′ > r).

For case (1), CBSS searches in a best-first manner, which
guarantees that P is the first node with a conflict-free joint
path that is popped from OPEN, and g is the smallest cost
among the costs of all nodes in OPEN. Thus g ≤ g∗. The
joint path in node P ∗ is an optimal solution, and thus g∗ ≤ g.
Therefore, g = g∗ ≤ (1 + ϵ)g∗.

For case (2), in Alg. 3, any nodes that are expanded by
CBSS cannot have a cost value that is greater than (1 + ϵ)g′,
because otherwise root Proot,r′ would have been generated.
Therefore, g∗ ≥ g′ ≥ g

(1+ϵ) . The first inequality holds because
node Proot,r′ has an empty constraint set Ω′ while node P ∗

has a constraint set Ω∗ that is a super set of Ω′. Therefore,
g ≤ (1 + ϵ)g∗ for case (2). In summary, for either case, we
have g ≤ (1 + ϵ)g∗.
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B. Visiting Vertices Exactly Once and At Least Once

Within CBSS, the K-best sequencing procedure computes
joint sequences that visit each vertex in GT exactly once,
instead of at least once. This section shows that CBSS can
find an (1 + ϵ)-bounded sub-optimal solution (if one exists)
by considering only the joint sequences that visit each vertex
in GT exactly once (i.e., Theorem 4 holds).

Let L∗ = {γ∗
1 , γ

∗
2 , . . . , γ

∗
n} denote the (finite) list of all

joint sequences where each γ∗
i ∈ L∗ visits each vertex in GT

exactly once. The joint sequences in L∗ are ordered such that
their costs are non-decreasing (i.e., cost(γ∗

i ) ≤ cost(γ∗
i+1) for

i = 1, 2, · · · , n − 1). Similarly, let L′ = {γ′
1, γ

′
2, . . . } denote

the (infinite) list of joint sequences where each γ′
j ∈ L′ visits

each vertex in GT at least once. Since every γ∗
i ∈ L∗ visits

each vertex in GT for at least once, it follows that L∗ ⊂ L′.
The joint sequences in L′ are ordered such that their costs
are non-decreasing. In addition, if the cost of any two joint
sequences γ′

i, γ
′
j ∈ L′ are the same, they are ordered such that

• γ′
i appears before γ′

j in L′, if γ′
i, γ

′
j ∈ L∗ and γ′

i appears
before γ′

j in L∗;
• γ′

i appears before γ′
j in L′, if γ′

i ∈ L∗ and γ′
j /∈ L∗.

Lemma 1. For each γ∗
i ∈ L∗, there exists a corresponding

γ′
j ∈ L′ such that γ′

j = γ∗
i and j ≥ i.

Let (γ∗
i , γ

′
j) denote such a pair of joint sequences in L∗, L′

as described in Lemma 1. Let (γ∗
i , γ

′
j) and (γ∗

i+1, γ
′
j+ℓ) denote

two adjacent pairs such that cost(γ∗
i+1) > cost(γ∗

i ). Let L∗
i

denote the list of the i-best joint sequences {γ∗
1 , γ

∗
2 , . . . , γ

∗
i }

(and i ≤ n− 1). We then have the following lemma.

Lemma 2. For any joint sequence γ′
k′ , k′ = j + 1, j +

2, . . . , j + ℓ − 1, γ′
k′ can be converted into a joint sequence

γ∗
k for some k = 1, 2, · · · , i by taking shortcuts in GT so that

γ∗
k visits each vertex in GT exactly once.

This lemma holds because GT satisfies the triangle inequal-
ity, and we can thus take shortcuts for vertices that are visited
multiple times. Furthermore, γ∗

k must be the same as one of the
joint sequence in L∗

i , because otherwise L∗
i cannot be the i-

best joint sequences. Additionally, if i = n, then ℓ in Lemma 2
becomes infinity. In other words, let (γ∗

n, γ
′
n′) denote the last

pair. All joint sequences after γ′
n′ in L′ can be shortcut to one

of the joint sequences in L∗.
We then show that, by using L∗ (instead of L′) to generate

root nodes during the CBSS search (Alg. 3), Theorem 4 holds.

Definition 2 (CV-set). For a node P = (π, g,Ω), let CV (P )
denote a set of joint paths (where CV stands for “consistent
and valid”), such that for each π ∈ CV (P ), π (i) is conflict-
free (i.e., valid), (ii) follows γ(P ), and (iii) satisfies all
constraints in Ω (i.e., is consistent with Ω).

Additionally, if π ∈ CV (P ), we say node P permits π. Let
γ′
k′ denote a joint sequence as discussed in Lemma 2 and let

γ∗
k denote a the corresponding joint sequence after the shortcut

as stated in Lemma 2. Let πk′ denote a joint path that follows
γ′
k′ while ignoring any conflict (and obviously cost(πk′) =

cost(γ′
k′)), and let Pk′ = (πk′ , cost(πk′), ∅) denote a root

node. Similarly, let πk denote a joint path that follows γ∗
k

while ignoring any conflict, and let Pk = (πk, cost(πk), ∅)
denote a root node.

Lemma 3. For each π that is permitted by P ′, π is also
permitted by Pk.

To show this lemma, we need to verify the three conditions
in Def. 2. Condition (i) and (iii) are obvious given that π is
permitted by P ′. We now show condition (ii). π is permitted
by P ′, which means π follows γ′

k′ (where some of the vertices
in GT are visited multiple times). Since γ′

k′ can be shortcut
to γ∗

k (i.e., skip the vertices in GT that are visited multiple
times), π also follows the joint sequence γ∗

k . This justifies the
condition (ii) in Def. 2. Lemma 3 shows that, during the CBSS
search, by only generating root nodes that correspond to joint
sequences in L∗, Theorem 4 holds.

VII. RESULTS

A. Baselines and Test Settings

We implement CBSS in Python. We use LKH-2.0.911 [20]
as the single-agent asymmetric TSP solver required by the
transformation method (Sec. V-C). We implement the low-
level search in CBSS by using SIPP [42] to search a space-
time graph G × {0, 1, 2, . . . , T} subject to vertex and edge
constraints. We learn from our prior work [43] that SIPP runs
faster than A* as the low-level search for CBS-like algorithms.
We use different grid maps from a online data set [5] and make
each of them a four-neighbor graph with unit-cost edges. All
tests are run on a computer with an Intel Core i7-11800H CPU
and 16GB RAM. Each test instance has a runtime limit of one
minute. For the rest of the paper, let N denote the number of
agents and M denote the number of targets. The number of
destinations are not included in M .

We select four baselines for comparison. The first one
is using A* to search the joint configuration space of the
agents, where each search state encodes both the location of
agents as well as the visiting status of the targets. This A*
method is guaranteed to find an optimal solution. The second
baseline is MS* [8], which is a multi-agent planner leveraging
subdimensional expansion [9] to solve the fully anonymous
version of MCPF problems, (i.e., each target or destination
can be assigned to any agent).

The third baseline is a greedy method. It begins by assign-
ing targets and destinations in a greedy manner (explained
later) and then invokes LKH for each agent i ∈ I to compute
the visiting order of the assigned targets. The computed joint
sequence is then used within the CBSS framework with
ϵ = ∞. As a result, this greedy baseline runs in a sequential
manner by first computing a joint sequence γ and then
planning a conflict-free joint path following γ. This greedy
baseline can handle arbitrary forms of assignment constraints.
Specifically, the greedy assignment procedure consists of the
following steps: (i) In an iteration, the procedure iterates all

11LKH is a heuristic algorithm for TSP, which finds an optimal solution for
numerous TSP instances [20] (http://akira.ruc.dk/∼keld/research/LKH). This
paper uses LKH as the TSP solver due to its computational efficiency. Other
TSP solvers can also be used. Note that, since the tour returned by LKH is
not guaranteed to have the minimum cost, the resulting implementation of
CBSS (with ϵ = 0) is not guaranteed to return an optimal solution.

http://akira.ruc.dk/~keld/research/LKH
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unassigned targets v and the corresponding eligible agents
i ∈ fA(v) to find a pair (v, i) that has the minimum path
cost between the agent-i’s “current vertex” (which is initialized
as vio for each agent i) and the target v; (ii) The procedure
assigns target v to agent i and updates agent-i’s current vertex
to v; (iii) The procedure repeats (i) and (ii) until all targets are
assigned, and then runs the same greedy assignment procedure
for all destinations while ensuring that each agent is assigned
to a unique destination. After the assignment, LKH is called to
find the visiting order as follows. Let vid denote the destination
assigned to agent i. First, the edge cost cost(vid, v

i
o) is set to a

small number so that (vid, v
i
o) must be included into the tour.

Then, LKH finds a tour that starts and ends at vio while visiting
all the assigned targets and vid. Finally, the edge (vid, v

i
o) is

removed from the tour and the resulting path specifies the
visiting order of the targets.

Finally, the fourth baseline is the aforementioned sequential
method (Sec. V-E), which separates the target sequencing and
path planning into two phases: this baseline first uses the
target sequencing method in Sec. V-C to compute a minimum
cost joint sequence γ, and then uses CBS-like search to plan
a conflict-free joint path by following γ. This baseline is a
special case of CBSS with ϵ being infinity (i.e., the second
best joint sequence is never computed).

B. CBSS vs MS*
We begin our tests with fully anonymous MCPF problems.

We compare CBSS (ϵ = 0) against both MS* [8] and A* for
N ∈ {5, 10, 20} and M ∈ {10, 20, 30, 40, 50}. We report the
success rates within the runtime limit. The A* method can not
solve any instances with N = 5 within the time limit due to
the exponential growth of the joint configuration space with
respect to the number of agents, and is thus omitted from
the figure. For CBSS and MS*, as shown in Fig. 5, CBSS
achieves higher success rates than MS* in all settings, and
doubles the success rates in some settings. For example, in
Fig. 5 (c), when N = 10 (the red markers) and M = 20,
the success rate of MS* is less than 40% while the rate of
CBSS is 100%. A possible reason is because MS* still needs
to search the joint configuration space of the agents that are
in conflict with each other while CBSS is able to bypass the
search in the joint configuration space via multiple constrained
single-agent search.

C. CBSS with Different Sub-optimality Bounds
We then investigate using different ϵs in CBSS. We use the

most challenging setting from the previous test (i.e., the maze
map with N = 20) and vary the ϵ among {0, 0.01, 0.1}. All
test instances are fully anonymous, same as the instances in
the previous section. All statistics in Fig. 6 are taken over all
instances (both solved and unsolved within the runtime limit).

1) Success Rates: As shown in Fig. 6 (b), increasing ϵ from
0 to 0.01 can increase the success rate. A reason is that a small
ϵ can help with tie-breaking: for instances with many equal-
cost joint sequences, a small ϵ such as 0.01 can defer the
generation of those equal-cost joint sequences with tiny loss
in the optimality bound (1% loss). Similarly, increasing ϵ from
0.01 to 0.1 can further improve the success rate.

Fig. 5. Numerical results of CBSS (this work) and MS* (baseline). Color
indicates different numbers of agents (N ) and the x-axis represents the number
of targets (M ). CBSS (the triangles markers) achieves up to 60% higher
success rates than MS* (the bars) within the one minute runtime limit.

2) Number of Calls on the TSP Solver: As shown in Fig. 6
(c), increasing ϵ leads to fewer TSP solver calls. This is
expected as a larger ϵ can defer the generation of the next
best joint sequence (Sec. V-E). For example, when ϵ = 0.1
and M = 30, 40, 50, only one joint sequence is generated.

3) Number of Nodes Expanded: As shown in Fig. 6
(d), increasing ϵ leads to more nodes expansion in general.
Combined with Fig. 6 (b) and (c), it indicates that, with a
large ϵ, CBSS tries to find a solution by following the joint
sequences that have been generated and defers the (expensive)
computation of the next-best joint sequence, which leads to
higher success rates in general. However, note that using a
larger ϵ to defer the generation of the next-best joint sequence
can not theoretically guarantee a higher success rate, since
it is possible that the generated joint sequences lead to many
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Fig. 6. Numerical results of CBSS with different sub-optimality bounds ϵ.
CBSS with ϵ = ∞ is the fourth baseline, the sequential method. (b) shows
the success rates. (c) shows the number of TSP solver calls. (d) shows the
number of nodes expanded by CBSS. There is a trade-off between solution
optimality bound and runtime efficiency: larger ϵ tends to defer the generation
of the next-best joint sequence and can lead to higher success rates within
the runtime limit.

conflicts between agents and result in a large runtime. We will
revisit this in the next subsection.

To summarize, there is a trade-off between solution optimal-
ity bound and runtime efficiency, and a larger ϵ often leads to
higher success rates empirically.

D. CBSS vs Sequential Method

This section compares CBSS against the sequential method.
As shown in Fig. 6, this baseline (in blue) performs similarly
to CBSS with ϵ = 0.1. In Fig. 6 (b) when M = 20, there is an
instance where CBSS with ϵ = 0.1 succeeds and the baseline
fails. The reason is that this baseline method computes only
one joint sequence and then plans paths by following the joint
sequence, which may lead to a large number of conflicts. In
contrast, CBSS with ϵ = 0.1 (or other finite ϵ) can generate
a next-best joint sequence when needed. It is also worthwhile
to note that these cases exist but rarely occur. The condition
under which these cases happen remain an open question and
is worthwhile investigation in the future work.

Furthermore, we compare the solution cost computed by
CBSS and the sequential method. As shown in Table I, CBSS
with ϵ = 0.01 often computes (slightly) cheaper solutions
than the baseline in the Maze map, and in the Random
map, both methods often compute solutions of the same
cost. The result indicates that, for most instances in practice,
the sequential method can compute optimal or near-optimal
solutions. However, it fails to provide any solution quality
guarantee, which motivates us to develop the anytime and
adaptive variants of CBSS that can simultaneously achieve
the relatively high success rates as this baseline does while
providing tight sub-optimality bounds.

E. CBSS Variants

(a) Maze 32x32, N = 20

M Total Succ. Inst. % of Inst. Median Cost Diff.
10 23 47.8% 4 (1.2%)
20 19 47.4% 4 (1.0%)
30 18 22.2% 7 (1.5%)
40 17 29.4% 3 (0.8%)
50 15 6.7% 10 (2.3%)

(b) Random 32x32, N = 20

M Total Succ. Inst. % of Inst. Median Cost Diff.
10 25 16.0% 3 (1.5%)
20 25 8.0% 3 (1.3%)
30 25 4.0% 4 (1.6%)
40 25 8.0% 3 (1.1%)
50 23 0% 0 (1.2%)

TABLE I
THE SOLUTION COSTS COMPARISON BETWEEN CBSS WITH ϵ = 0.01
(WHOSE SOLUTION COST IS DENOTED AS C1) AND THE (BASELINE)

SEQUENTIAL METHOD (WHOSE COST IS DENOTED AS C2) IN TWO MAPS
WITH 20 AGENTS (N = 20). FROM LEFT TO RIGHT, THE FIRST COLUMN

SHOWS THE NUMBER OF TARGETS (M) AND THE SECOND COLUMN
SHOWS THE TOTAL NUMBER OF INSTANCES WHERE BOTH METHODS

SUCCEED. AMONG THESE COMMONLY SUCCEEDED INSTANCES, THE “%
OF INST” COLUMN SHOWS THE PERCENTAGE OF INSTANCES WHERE
C1 < C2 . AMONG THESE C1 < C2 INSTANCES, THE LAST COLUMN

SHOWS THE MEDIAN NUMBER OF THE ABSOLUTE SOLUTION COST
DIFFERENCE AS WELL AS THE MEDIAN NUMBER OF THE RATIO

(C2 − C1)/C1 IN THE PARENTHESES.

Fig. 7. Numerical results of anytime CBSS. The bar plots are against the
left vertical axis and show the percentage of instances whose solutions are
improved before timeout. The error bars are against the right vertical axis and
show the amount of improvement. This result verifies that anytime CBSS can
improve solution quality before the runtime limit is reached.

1) Anytime CBSS: To verify the idea of anytime CBSS,
we implement the algorithm as follows. We begin by us-
ing ϵ = 0.1 and reduce ϵ down to 0.01 after the first
solution is found. If anytime CBSS improves its solution
before timeout, the amount of improvement is measure by
(cost(πfirst)− cost(πlast))/cost(πlast), where πfirst denote
the first solution that is found while πlast denote the last
solution that is returned when the algorithm terminates. We
test in the Maze map and the result is shown in Fig. 7.
When the runtime limit increases from 1 minute (Fig. 7 (a))
to 2 minutes (Fig. 7 (b)), there is an increasing percentage
of instances, where the first solution computed by anytime
CBSS is improved before termination, and the solution quality
improvement is up to 0.05 (5%). This result verifies that
anytime CBSS can improve solution quality before the time
budget depletes.

2) Adaptive CBSS: To verify the idea of adpative CBSS, we
count the runtime Tγ∗

1
of computing γ∗

1 and set ϵ = Tγ∗
1
/60.

We test in two maps as shown in Fig. 8. Overall, high success
rates are maintained as the number of targets (M ) increases,
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Fig. 8. Numerical results of the adaptive CBSS. The green curves are against
the left vertical axis and show the success rates under a runtime limit of
one minute. The error bars are against the right vertical axis and show the
sub-optimality bound ϵ. This result verifies that adaptive CBSS can adjust the
sub-optimality bound based on the difficulty of the instances while maintaining
high success rates.

while the sub-optimality bound ϵ increases based on Tγ∗
1

.

F. CBSS for MCPF with Various Assignment Constraints

In the previous sections, CBSS is evaluated with fully
anonymous MCPF problems. This section evaluates CBSS
with various types of assignment constraints. Since the prob-
lem formulation of MCPF is very general, it is impossible to
evaluate all different forms of assignment constraints within
this paper. We select the following cases to investigate.

• (Case-1) Each destination is assigned to a unique agent
and all targets are anonymous. This type is a strict
generalization of MAPF.

• (Case-2) Each agent has a pre-assigned target while the
remaining targets and all destinations are anonymous.

• (Case-3) A combination of Type-1 and Type-2: every
destination is assigned to a unique agent, and each agent
has a pre-assigned target while the remaining targets are
anonymous.

All tests are run in the aforementioned Random map with
N = 10, ϵ = 0.01. We compare CBSS and the aforemen-
tioned greedy baseline (which can handle arbitrary forms of
assignment constraints). We report in Fig. 9 both the success
rate and the cost ratio, which is defined as

cost ratio =
cost(πGreedy)− cost(πCBSS)

cost(πCBSS)
, (1)

where cost(πGreedy) and cost(πCBSS) are the solution cost
computed by the greedy method and CBSS respectively. The
statistics of the cost ratio are computed over all instances that
are solved by both methods within the runtime limit.

1) Success Rates: The greedy method achieves higher
success rates than CBSS in general, especially when M is
large (e.g. in Fig. 9 (c) and (d)). This is expected since a
larger M leads to TSPs with more vertices, which is in general
computationally more expensive to solve. We observe from the
data that, in Fig. 9 (b) with M = 50, CBSS cannot finish
computing the first best joint sequence within the runtime
limit, which demonstrates the computational burden for target
sequencing. In contrast, the greedy method can compute a joint
sequence quickly and achieve higher success rates.

There are also cases where CBSS achieves higher success
rates than the greedy method (e.g. in Fig. 9 (d) when M =

Fig. 9. Numerical results of CBSS and the greedy baseline. (a) shows the
results of the anonymous case as described in Sec. VII-B. (b) (c) and (d)
correspond to Case-1, Case-2, Case-3 of assignment constraints respectively
as explained in the text. The greedy method achieves higher success rates
than CBSS in general but suffers from higher solution costs.

20). The reason is that the greedy method computes only one
joint sequence and then run CBS-like search by following this
(fixed) joint sequence. If this joint sequence leads to many
conflicts between agents, the greedy method has to resolve
all conflicts before returning a solution. In CBSS, the next-
best joint sequence is generated when needed, which can help
bypass the large number of conflicts caused by following only
one joint sequence.

2) Solution Cost: The black error bars in Fig. 9 show the
distribution of the cost ratios. Although the greedy baseline
runs fast, it can lead to solutions that are up to 50% more
expensive than the solutions computed by CBSS. It shows
the trade-off between solution quality and runtime: solving
computationally expensive TSPs in CBSS can lead to solutions
with cheaper cost.

G. Gazebo Simulation and Physical Robot Tests

To verify that the planned joint path by CBSS can be
executed on robots, we run simulation using Gazebo as well
as physical robot tests using Robotarium [44], a remotely
accessible multi-robot testbed. For Gazebo simulation, we
describe the workspace using a four-neighbor grid-like graph
and simulate N = 10 robots with M = 20 targets and
10 destinations as shown in Fig. 10.12 For Robotarium, we
test with N = 4 mobile robots and M = 12 targets. We
demonstrate the test in the multi-media attachment. In this
paper, we do not explicitly consider the uncertainty in the
robot motion or the environment, which is itself an important
research area (e.g. [45]) and is beyond the scope of this paper.

12The Gazebo warehouse environment is from https://github.com/
belal-ibrahim/dynamic logistics warehouse, and the RosBot2 is from https:
//github.com/husarion/rosbot description.

https://github.com/belal-ibrahim/dynamic_logistics_warehouse
https://github.com/belal-ibrahim/dynamic_logistics_warehouse
https://github.com/husarion/rosbot_description
https://github.com/husarion/rosbot_description


IEEE TRANSACTIONS ON ROBOTICS 14

Fig. 10. Simulation using Gazebo and ROS. We describe the workspace using
a four-neighbor grid-like graph and simulate 10 robots with 20 targets and 10
destinations.

VIII. CONCLUSION AND FUTURE WORK

This paper formulates a problem called Multi-Agent Com-
binatorial Path Finding (MCPF), which requires both planning
collision-free paths for multiple agents as MAPF requires, as
well as allocating targets to agents and finding visiting order
of targets for agents as mTSP requires. We develop a new ap-
proach Conflict-Based Steiner Search (CBSS) to solve MCPF
with optimality guarantees. CBSS is a general and flexible
approach in the following sense. First, by varying the sub-
optimality bound ϵ ∈ [0,∞], CBSS moves along a spectrum
from computing optimal solutions with high computational
burden, to computing ϵ-bounded sub-optimal solutions within
a smaller amount of runtime, to computing unbounded sub-
optimal solutions quickly. Second, different target sequencing
procedures (e.g. greedy sequencing, K-best sequencing) can
be used together with CBSS, trading off solution quality for
runtime efficiency. Third, we develop the anytime and adaptive
variants of CBSS, which trade off computational efficiency for
solution quality. This paper also provides extensive numerical
results to corroborate the performance of CBSS in various
settings with different numbers of agents and targets.

For future work, one can extend CBSS to address the
uncertainty in the robot motion or in the environment (e.g.
by leveraging [45]), which is not considered in the current
paper. In addition, one can also expedite CBSS by leveraging
approximation or heuristic target sequencing methods, or by
incorporating CBS-related techniques to speed up the multi-
agent path planning in CBSS.
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