
Binary Branching Multi-Objective Conflict-Based Search
for Multi-Agent Path Finding

Zhongqiang Ren1*, Jiaoyang Li1*, Han Zhang2,
Sven Koenig2, Sivakumar Rathinam3, Howie Choset1

1Carnegie Mellon University, Pittsburgh, PA 15213, USA
2University of Southern California, Los Angeles, CA 90007, USA

3Texas A&M University, College Station, TX 77843, USA
zhongqir@andrew.cmu.edu, jiaoyangli@cmu.edu, zhan645@usc.edu,

skoenig@usc.edu, srathinam@tamu.edu, choset@andrew.cmu.edu

Abstract

This paper considers a multi-agent multi-objective path-
finding problem that requires not only finding collision-free
paths for multiple agents from their respective start locations
to their respective goal locations but also optimizing multiple
objectives simultaneously. In general, there is no single solu-
tion that optimizes all the objectives simultaneously, and the
problem is thus to find the so-called Pareto-optimal frontier.
To solve this problem, an algorithm called Multi-Objective
Conflict-Based Search (MO-CBS) was recently developed
and is guaranteed to find the exact Pareto-optimal frontier.
However, MO-CBS does not scale well with the number of
agents due to the large branching factor of the search, which
leads to a lot of duplicated effort in agent-agent collision res-
olution. This paper therefore develops a new algorithm called
Binary Branching MO-CBS (BB-MO-CBS) that reduces the
branching factor as well as the duplicated collision resolu-
tion during the search, which expedites the search as a result.
Our experimental results show that BB-MO-CBS reduces the
number of conflicts by up to two orders of magnitude and of-
ten doubles or triples the success rates of MO-CBS on various
maps given a runtime limit.

1 Introduction
Multi-Agent Path Finding (MAPF), as its name suggests, re-
quires finding collision-free paths for multiple agents from
their respective start locations to their respective goal loca-
tions, while optimizing a scalar measure of the paths. MAPF
arises in applications such as warehouse logistics (Wurman,
D’Andrea, and Mountz 2008) and airport surface manage-
ment (Morris et al. 2016). Variants of MAPF have been
widely studied over the last few years (Stern et al. 2019).
This paper considers a generalization of MAPF to multiple
objectives, called Multi-Agent Multi-Objective Path Find-
ing (MA-MO-PF) (Weise et al. 2020; Ren, Rathinam, and
Choset 2021, 2022). In MA-MO-PF, agents have to trade
off one objective for another, such as arrival times, travel
risks, and path lengths. MA-MO-PF is a generalization of
MAPF and is, in general, NP-Hard to solve to optimality (Yu
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and LaValle 2013). In general, there does not exist a single
MA-MO-PF solution that simultaneously optimizes all the
objectives. The goal of MA-MO-PF is thus to find a Pareto-
optimal set of solutions, whose corresponding cost vectors
(where each component corresponds to an objective to be
minimized) form the so-called Pareto-optimal frontier.

A solution is Pareto-optimal if one cannot improve on one
objective without deteriorating at least one of the other ob-
jectives. Ultimately, the challenge of the MA-MO-PF prob-
lem is to compute the Pareto-optimal frontier, which requires
both resolving agent-agent collision and optimizing multi-
ple objectives. To address this challenge, evolutionary algo-
rithms (Weise et al. 2020) were proposed to quickly approx-
imate the Pareto-optimal frontier, while search-based algo-
rithms (Ren, Rathinam, and Choset 2021, 2022) were devel-
oped to compute the exact Pareto-optimal frontier. We are
interested in search algorithms in this paper.

Among these search algorithms, Multi-Objective
Conflict-Based Search (MO-CBS) (Ren, Rathinam, and
Choset 2022) is a leading approach that leverages both
Conflict-Based Search (CBS) (Sharon et al. 2015) for
(single-objective) MAPF and the dominance principle from
multi-objective optimization (Ehrgott 2005). Similar to
CBS, MO-CBS is a two-level search algorithm. It begins by
finding a Pareto-optimal set of (individual) paths for each
single agent ignoring any agent-agent collision and then
takes all combinations of these paths over all the agents
to form a set of joint paths, where a joint path is a set of
paths with one path for each agent. MO-CBS then creates a
constraint tree (Sharon et al. 2015) for each joint path for
the high-level search. In a joint path, if two agents occupy
the same location at the same time, a conflict happens. To
resolve a conflict between two agents, a constraint is added
to either of the agents, and the low-level search finds a new
Pareto-optimal set of paths for that agent while satisfying
all constraints. Each of these paths results in a new branch
for future search, and the number of branches (i.e., the
branching factor) is often large, as each agent may have
many Pareto-optimal paths.

This paper relies on our key observation that the high-
level search of MO-CBS often resolves the same conflict
many times, which reduces the computational efficiency



of MO-CBS. To reduce the wasted computational effort,
we develop a new algorithm called Binary Branching MO-
CBS (BB-MO-CBS), which (i) employs a new high-level
search to update all joint paths intelligently, when a con-
flict is resolved and enjoys the small constant branching
factor of two; and (ii) is able to discard dominated joint
paths during the search and thus avoids the duplicated con-
flict resolution effort for the discarded joint paths. Con-
sequently, BB-MO-CBS runs much faster than MO-CBS.
We prove that BB-MO-CBS is guaranteed to find the ex-
act Pareto-optimal frontier. Our experimental results show
that BB-MO-CBS reduces the number of conflicts by up to
two orders of magnitude. As a result, with a runtime limit of
300 seconds per test instance, BB-MO-CBS often doubles
or triples the success rates of MO-CBS on various maps.

2 Problem Definition
Let index set I = {1, 2, . . . , N} denote a set of N agents.
We use i, j ∈ I to denote agents. All agents move in a shared
workspace, which is represented as a finite undirected graph
G = (V,E), where the vertex set V denotes all possible
locations of the agents, and the edge set E ⊆ V × V de-
notes all possible actions that can move an agent between
two vertices in V . An edge between u, v ∈ V is denoted as
(u, v) ∈ E, and the cost of e ∈ E is an M -dimensional vec-
tor: cost(e) ∈ (0,∞)M with M being a positive integer and
each component in cost(e) being a finite positive real value.

We use a superscript i, j ∈ I with a variable to indicate
the agent that the variable relates to (e.g., vi ∈ V means
the vertex occupied by agent i). Let πi(vi1, v

i
ℓ) represent a

path that connects vertices vi1 and viℓ via a sequence of ver-
tices (vi1, v

i
2, . . . , v

i
ℓ) in G. Let g⃗(πi(vi1, v

i
ℓ)) (as opposed to

a scalar g) denote the M -dimensional cost vector (also re-
ferred to as path cost) associated with the path, which is the
sum of the cost vectors of all edges present in the path, i.e.,
g⃗(πi(vi1, v

i
ℓ)) = Σj=1,2,...,ℓ−1cost((vij , v

i
j+1)).

All agents share a global clock and start to move along
their paths at time t = 0. Each action, either to wait or
move along an edge, for any agent requires one unit of time.
Agents i, j ∈ I are in conflict iff (i.e., if and only if) one
of the following two cases happens. The first case is a ver-
tex conflict where two agents occupy the same vertex at the
same time. The second case is an edge conflict where two
agents traverse the same edge from opposite directions at
the same time.

Let vio, v
i
d ∈ V denote the initial vertex and the destina-

tion of agent i. To simplify the notation, we also refer to a
path πi(vio, v

i
d) for agent i between its initial vertex and des-

tination simply as πi. Let π = (π1, π2, . . . , πN ) represent
a joint path for all agents. The cost vector of a joint path is
defined by the vector sum of the individual path costs over
all agents, i.e., g⃗(π) = Σig⃗(π

i). In this work, an agent i ∈ I
eventually stays at vid and incurs no cost from then on.

To compare any two paths or joint paths, we compare their
cost vectors. Given two vectors a⃗ and b⃗, vector a⃗ is said to
dominate vector b⃗ iff every component in a⃗ is no larger than
the corresponding component in b⃗ and there exists at least
one component in a⃗ that is smaller than the corresponding

component in b⃗. Let a⃗(m),m ∈ {1, 2, · · · ,M} denote the
m-th component in a⃗.
Definition 1 (Dominance (Ehrgott 2005)) Given two vec-
tors a⃗ and b⃗ of length M , a⃗ dominates b⃗, notationally
a⃗ ≺ b⃗, iff ∀m ∈ {1, 2, . . . ,M}, a⃗(m) ≤ b⃗(m), and
∃m ∈ {1, 2, . . . ,M}, a⃗(m) < b⃗(m).
Any two joint paths (or two individual paths) are
undominated with respect to each other iff their cost vectors
do not dominate each other. A joint path π is undominated
with respect to a set of joint paths Π if π is undominated
by any π′ ∈ Π. Among all conflict-free joint paths (i.e.,
solutions), the set of all undominated ones is called the
Pareto-optimal set. Given the graph G, vio and vid, i ∈ I , the
MA-MO-PF problem seeks to find all cost-unique Pareto-
optimal solutions, i.e., any maximal subset of the Pareto-
optimal set, where any two solutions in this subset do not
have the same cost vector. The cost vectors of the solutions
in this subset form the Pareto-optimal frontier.

Definition 2 Given two vectors a⃗ and b⃗ of length M ,
a⃗ weakly dominates b⃗, notationally a⃗ ⪯ b⃗, iff ∀m ∈
{1, 2, . . . ,M}, a⃗(m) ≤ b⃗(m).

a⃗ ⪯ b⃗ is equivalent to that a⃗ dominates or is equal to b⃗. Fi-
nally, given a set Π of joint paths, let ND(Π) denote a maxi-
mal cost-unique undominated subset of Π.

3 Preliminaries
This section reviews CBS (Sharon et al. 2015) and
MO-CBS (Ren, Rathinam, and Choset 2022). The concepts
and notations in this section will be used later.

3.1 Review of CBS
Conflict-Based Search (CBS) is a two-level search algorithm
that finds a minimum-cost solution for any solvable (single-
objective) MAPF. On the high level, every node P is defined
as a tuple (π, g,Ω), where:
• Ω is a set of constraints. Each constraint has form (i, v, t)

(or (i, e, t)), which means that agent i is forbidden to oc-
cupy vertex v (or to traverse edge e) at time t (between t
and t+ 1).

• π = (π1, π2, . . . , πN ) is a joint path that connects vio and
vid for all agents. Each path πi in π is a minimum-cost
path that satisfies the constraints in Ω related to agent i.

• g is the scalar cost value of π (i.e., g = g(π)).
CBS constructs a constraint tree with the root node Po =
(πo, g(πo), ∅), where πo is constructed by running the low-
level (single-agent) planner, such as A*, for every agent with
an empty constraint set while ignoring all other agents. Po

is then added to OPEN, a queue that prioritizes nodes based
on their g-values from the minimum to the maximum.

In each search iteration, a node P = (π, g,Ω) with the
minimum g-value is popped from OPEN for expansion. To
expand P , every pair of individual paths in π is checked for
a vertex conflict (i, j, v, t) (and an edge conflict (i, j, e, t)),
which means agents i and j are in conflict at vertex v (and
edge e, respectively) at time t. If no conflict is detected, π



Algorithm 1 Pseudocode for MO-CBS and MO-CBS-t

1: Compute {Πi,∀i ∈ I}, create root nodes and add them
to OPEN.

2: C ← ∅
3: while OPEN is not empty do
4: Pk = (πk, g⃗k,Ωk)← OPEN.pop()
5: if SolutionFilter(C, Pk) then continue
6: cft←DetectConflict(πk)
7: if cft= NULL then
8: SolutionUpdate(C, Pk)
9: add g⃗k to C

10: continue
11: {ωi, ωj} ← GenerateConstraints(cft)
12: for all i′ ∈ {i, j} do
13: Ωl = Ωk ∪ {ωi′}
14: Πi′

∗ ← LowLevelSearch(i′, Ωl)
15: for all πi′

∗ ∈ Πi′

∗ do
16: πl ← πk, then replace πi′

l (in πl) with πi′

∗
17: g⃗l ← g⃗(πl)
18: Pl = (πl, g⃗l,Ωl)
19: if not SolutionFilter(C, Pl) then
20: add Pl to OPEN
21: return C

is conflict-free and returned as an optimal solution. Other-
wise, to resolve the detected conflict (i, j, v, t), two con-
straints ωi = (i, v, t) and ωj = (j, v, t) are generated,
and two new corresponding constraint sets Ω

⋃
{(i, v, t)}

and Ω
⋃
{(j, v, t)} are created. Edge conflicts are handled

in a similar manner, which is thus omitted. Then, for each
new constraint (i, v, t) and the corresponding constraint set
Ω′ = Ω

⋃
{(i, v, t)}, the low-level planner is invoked to plan

a minimum-cost path π′i for agent i while satisfying all the
constraints related to agent i in Ω′. The low-level planner
typically runs an A*-like search in a time-augmented graph
G′ with vertices V×{0, 1, 2, · · · }with constraints represent-
ing inaccessible vertices or edges in this graph G′. A joint
path π′ = (π1, π2, · · · , π′i, · · · , πN ) is then formed and a
new node (π′, g(π′),Ω′) is created and added to OPEN.

3.2 Review of MO-CBS
MO-CBS (Ren, Rathinam, and Choset 2022) (Alg. 1) ex-
tends CBS to optimize multiple objectives. During initial-
ization, MO-CBS invokes a single-agent multi-objective A*
planner to find all cost-unique Pareto-optimal paths Πi

o for
each agent i ∈ I . MO-CBS then takes all combinations of
these individual paths over all agents to form a set of joint
paths Πo = Π1

o × Π2
o × · · · × ΠN

o , and each joint path
π ∈ Πo is then used to instantiate a root node (π, g⃗(π), ∅).
The definition of a node in MO-CBS is similar to the one
in CBS with the only difference that the scalar-cost g(π)
in CBS becomes a vector-cost g⃗(π) in MO-CBS. There are
|Π1

o| × |Π2
o| × · · · × |ΠN

o | root nodes in total, all of which
are added to OPEN, which is a queue that prioritizes the
nodes based on their g⃗-vectors in lexicographic order from
the minimum to the maximum. During the search, MO-CBS

Figure 1: A toy example where the same conflict is resolved
multiple times in different constraint trees during the search
of MO-CBS. (a) shows the graph where the numbers in
parentheses are edge cost vectors. (b) and (c) show the in-
dividual Pareto-optimal paths for the red (i) and the orange
(j) agent. (d), (e), and (f) are the three root nodes created
when initializing MO-CBS. Each blue dashed box shows
a conflict. (d) and (e) show that the same conflict is re-
solved in two different constraint trees during the search.
Our BB-MO-CBS is able to resolve both conflicts in (d) and
(e) at the same time.

maintains a set C of all undominated cost vectors of solutions
found so far.1

After the initialization, in every search iteration, a node
Pk = (πk, g⃗k,Ωk) with the lexicographic minimum g⃗-
vector is popped from OPEN for expansion.2 MO-CBS
checks if g⃗k is weakly dominated by any cost vector in C
(Line 5 in Alg. 1, SolutionFilter). If yes, then MO-CBS dis-
cards Pk since it cannot lead to a cost-unique Pareto-optimal
solution, and we say Pk is filtered. Otherwise, MO-CBS
checks Pk for a conflict (Line 6). If there is no conflict, then
πk is a solution, and MO-CBS removes any cost vectors in
C that are dominated by g⃗k (Line 8) before adding g⃗k to C
(Line 9). If there is a conflict, then MO-CBS resolves the
conflict in a similar way to CBS (Lines 11-20). The dif-
ferences between MO-CBS and CBS are: (i) the low-level
search of MO-CBS invokes a single-agent multi-objective
planner, which returns a set of cost-unique Pareto-optimal
paths that respect all constraints; (ii) MO-CBS generates a
node for each path that is returned by the low-level search
(Lines 16-18); and (iii) MO-CBS compares the cost vector
g⃗l of each generated node Pl against the cost vectors in C for
filtering (Line 19) before adding Pl to OPEN.

MO-CBS is guaranteed to find the Pareto-optimal frontier
for any solvable MA-MO-PF. Additionally, since the num-
ber |Π1

o|× |Π1
o|× · · ·× |ΠN

o | of root nodes can grow quickly
with the number of agents, it becomes computationally pro-

1We only mention storing (and returning) the solution cost vec-
tors since it is trivial to store (and return) the corresponding solu-
tions as well, which form the desired cost-unique Pareto-optimal
set (of solutions).

2We use subscripts k and l to denote a specific node (e.g., Pk)
or a specific element (e.g. Πk) in the corresponding node Pk.



Figure 2: A conceptual visualization of MO-CBS and
BB-MO-CBS with the differences discussed in Sec. 4.3.

hibitive to generate all root nodes before the search. To by-
pass this difficulty, a variant of MO-CBS, called MO-CBS-t,
modifies Line 4 in Alg. 1 by popping nodes from OPEN in
a “tree-by-tree” fashion. By doing so, MO-CBS-t can gen-
erate root nodes on demand and each constraint tree (rooted
in a generated root node) is exhaustively searched before a
new root node is generated.

A limitation of MO-CBS (and MO-CBS-t) is that a con-
flict might be repeatedly resolved in multiple constraint trees
and multiple branches of the same constraint tree, which
can make MO-CBS inefficient. We show a toy example in
Fig. 1 and present a new algorithm (with a different high-
level search) in the following that addresses this issue.

4 Method
This section begins with an overview of BB-MO-CBS and
explains the key procedures in the subsequent subsections.

4.1 Algorithm Description
The first key idea behind BB-MO-CBS is to update all joint
paths when a conflict is resolved, rather than updating only
a single joint path in a single constraint tree as in MO-CBS,
which is conceptually visualized in Fig. 2. The second key
idea is to consider only the undominated subset of joint paths
during the search rather than all joint paths (Sec. 4.3).

We begin by redefining what a node is in BB-MO-CBS. A
node is a tuple P = (Π, πrep, g⃗rep,Ω, {Πi,∀i ∈ I}), where:

• Π is a set of cost-unique joint paths such that (i) any pair
of joint paths in Π are undominated by each other, and
(ii) all joint paths in Π are lexicographically sorted based
on their g⃗-vectors from the minimum to the maximum;3

• πrep is the representative joint path of node P , which is
the first joint path in Π (denoted as Π.first). In other
words, πrep is the joint path in Π with the lexicographic
minimum cost vector;

3There is no need to generate and store Π (which is often a large
set). Instead, one can store the set B of undominated g⃗-vector of
each joint path in π ∈ Π. Each b⃗ ∈ B is the sum of g⃗(πi), πi ∈ Πi

for all i ∈ I , by storing this correspondence between b⃗ and πi, i ∈
I , one can readily reconstruct the joint path π for any b⃗ ∈ B.

• g⃗rep is the representative (cost) vector of node P , which
is the same as g⃗(πrep);

• Ω is a constraint set as used by CBS and MO-CBS; and
• {Πi,∀i ∈ I} is a set of cost-unique Pareto-optimal

paths for each agent i ∈ I that satisfy the constraints
in Ω. The following relationship holds for each node:
Π = ND(Π1×Π2×· · ·×ΠN ). We denote {Πi,∀i ∈ I}
simply as {Πi} without confusion.

BB-MO-CBS is shown in Alg. 2. During initializa-
tion (Line 2), BB-MO-CBS first plans for each agent i
a set of Pareto-optimal paths Πi

o ignoring other agents
and then computes the cost-unique undominated subset
ND(Πo) of Πo = Π1

o × Π2
o × · · · × ΠN

o by invok-
ing a procedure NonDomJointPath, which is explained in
the next section. There is a difference between ND(Πo)
and NonDomJointPath({Πi

o}): ND(Πo) is a set of joint
paths, while NonDomJointPath is a procedure that com-
putes ND(Πo). BB-MO-CBS then generates the initial node
Po = (ND(Πo), πo,rep, g⃗o,rep, ∅, {Πi

o}), which forms the
root node of the constraint tree. The root node is then added
to OPEN, which is a queue that prioritizes nodes based
on the lexicographic order of their representative vectors
from the minimum to the maximum. During the search,
BB-MO-CBS maintains a set C of all undominated cost vec-
tors of solutions found so far (Line 3).

After the initialization, BB-MO-CBS iteratively selects
a node Pk = (Πk, πk,rep, g⃗k,rep,Ωk, {Πi

k}) with the lex-
icographic minimum representative vector from OPEN for
expansion. BB-MO-CBS invokes the procedure DomPrune
(Line 6), which iterates the joint paths in Πk and removes
joint paths whose cost vectors are weakly dominated by
any vector in C. We explain DomPrune in the next sec-
tion. Afterwards, if at least one joint path was removed from
Πk by DomPrune and Πk is non-empty, then BB-MO-CBS
re-calculates the representative path and the representative
vector of node Pk (Line 9), and adds Pk back to OPEN
(Line 10). If no joint path is removed from Πk by Dom-
Prune, then BB-MO-CBS checks πk,rep for a conflict (Line
12). If no conflict is detected (Lines 13), then πk,rep is a
cost-unique Pareto-optimal solution. In this case, its cost
vector g⃗k,rep is added to C, and πk,rep is deleted from Πk.
Afterwards, if Πk is not empty, then node Pk (with a new
πk,rep ← Πk.first and g⃗k,rep ← g⃗(πk,rep)) is added to
OPEN (Lines 17-18) for future expansion.

If a conflict is detected in πk,rep, then the conflict is re-
solved in the same way as in CBS, namely by generating
two constraints (Line 20). For each newly generated con-
straint ωi, BB-MO-CBS makes a copy of the set of paths
{Πi

k} (Line 22), and generates a new constraint set Ωl by
adding ωi to Ωk (Line 23). Then, BB-MO-CBS invokes the
low-level search for agent i (Line 24), which finds all cost-
unique Pareto-optimal paths Πi

∗ that satisfy all constraints
related to agent i in Ωl. BB-MO-CBS replaces the path set
Πi

l with Πi
∗ (Line 25), and recompute the joint path set

Πl = ND(Π1
l ×Π2

l × · · · ×ΠN
l ) by invoking the procedure

NonDomJointPath (Line 26). Πl.first becomes the repre-
sentative path πl,rep of the new node Pl (Line 29), and its
cost vector g⃗l,rep becomes the representative vector of Pl.



Algorithm 2 Pseudocode for BB-MO-CBS

1: Po ← (ND(Πo), πo,rep, g⃗o,rep, ∅, {Πi
o})

2: add Po to OPEN
3: C ← ∅
4: while OPEN is not empty do
5: Pk = (Πk, πk,rep, g⃗k,rep,Ωk, {Πi

k})← OPEN.pop
6: Πk ←DomPrune(C, Πk)
7: if any joint path in Πk is filtered then
8: if Πk ̸= ∅ then
9: πk,rep ← Πk.first, g⃗k,rep ← g⃗(πk,rep)

10: add Pk to OPEN
11: continue
12: cft←DetectConflict(πk,rep)
13: if cft= NULL then
14: add g⃗k,rep to C
15: delete πk,rep from Πk

16: if Πk ̸= ∅ then
17: πk,rep ← Πk.first, g⃗k,rep ← g⃗(πk,rep)
18: add Pk to OPEN
19: continue
20: {ωi, ωj} ← GenerateConstraints(cft)
21: for all i′ ∈ {i, j} do
22: {Πi

l} ← {Πi
k}

23: Ωl ← Ωk ∪ {ωi′}
24: Πi′

∗ ← LowLevelSearch(i′, Ωl)
25: replace Πi′

l (in {Πi
l}) with Πi′

∗
26: Πl ← NonDomJointPath({Πi

l})
27: if Πl = ∅ then continue
28: π⃗l,rep ← Πl.first, g⃗l,rep ← g⃗(πl,rep)
29: add Pl = (Πl, πl,rep, g⃗l,rep,Ωl, {Πi

l}) to OPEN
30: return C

Pl is added to OPEN for future expansion.
BB-MO-CBS terminates when OPEN is empty and then

returns the set C, which the Pareto-optimal frontier of the
given MA-MO-PF problem instance (see Sec. 5).

4.2 Key Procedures of BB-MO-CBS
Filtering Solutions Procedure DomPrune removes (i.e.,
filters) all joint paths of a node that are weakly dominated
by existing solutions, similar to SolutionFilter of MO-CBS.
However, due to the new high-level search of BB-MO-CBS,
DomPrune works differently from SolutionFilter. As shown
in Alg. 3, DomPrune iterates over the given set of joint paths
Π, where the joint paths are lexicographically sorted in in-
creasing order of their cost vectors. DomPrune ensures that
the first joint path in Π is not weakly dominated by a so-
lution already found during the search. It does this by re-
peatedly removing the first joint path from Π until the first
joint path in Π is no longer weakly dominated by a solution
already found during the search. DomPrune needs to ensure
this property only for the first joint path in Π since Alg. 2 op-
erates only on that joint path (i.e., use it as the representative
joint path of the correpsonding node for conflict detection).
DomPrune could ensure this property for all joint paths in Π
but then would often be less efficient since Π can be large.

Algorithm 3 Pseudocode for DomPrune

Input: C is the set of solution cost vectors, and Π is a set
of joint paths of some node.
Output: Π filtered by C.

1: for all π ∈ Π do
2: if ∃c⃗ ∈ C, c⃗ ⪯ g⃗(π) then
3: remove π from Π
4: else break
5: return Π

Algorithm 4 Pseudocode for NonDomJointPath

Input: {Πi}.
Output: ND(Π1 ×Π2 × · · · ×ΠN ).

1: Let Ai denote the cost vectors of paths in Πi.
2: B ← A1

3: for all j = 2, 3, . . . , N do
4: B ← {b+ a , b ∈ B, a ∈ Aj}
5: B ← NonDomVec(B)
6: return the joint paths corresponding to B

Computing Undominated Subsets The procedure Non-
DomJointPath computes a cost-unique undominated maxi-
mal subset of a given set of joint paths. A naive implementa-
tion would first compute Π = Π1×Π2×· · ·×ΠN and then
iterate over each pair of joint paths in Π to find a maximal
cost-unique undominated subset. However, this naive imple-
mentation is computationally prohibitive since the size of Π
is often large. For example, if |Πi| = 10,∀i ∈ I , and there
are ten agents (N = 10), then |Π| = 1010.

Instead of calculating ND(Π1×Π2×· · ·×ΠN ), we could
calculate ND(· · · (ND(ND(Π1 × Π2)× · · · )× ΠN ). Let Ai

denote the cost vectors of paths in Πi. It is faster to perform
this calculation with the set Ai as follows. Alg. 4 calculates
B = NonDomVec(· · ·NonDomVec(NonDomVec(A1+A2)+
· · · ) +AN ), where Ai +Aj means taking the sum of every
pair of cost vectors a⃗i ∈ Ai and a⃗j ∈ Aj , and NonDomVec
computes the undominated subset of the input cost vectors
(Lines 2-5 in Alg. 4). The joint paths corresponding to B can
then be reconstructed at the end of Alg. 4. For each cost vec-
tor b⃗ ∈ B, we know that b⃗ =

∑
i∈I g⃗(π

i), πi ∈ Πi. Given
g⃗(πi), this reconstruction can look up the corresponding πi

in Πi since {Πi} is stored in each node. In practice, we only
need to reconstruct the joint path that corresponds to the lex-
icographically minimum cost vector of B (which is used as
the representative joint path of a node in Alg. 2).

An important procedure in Alg. 4 is NonDomVec, which
returns the undominated subset of a given set of vectors B.
A naive implementation iterates over every pair of vectors
in B, resulting in a runtime complexity of O(|B|2). To ex-
pedite the computation, we leverage Kung’s method (Kung,
Luccio, and Preparata 1975), which is a fast algorithm to
compute an undominated subset of vectors.



4.3 Relationship of BB-MO-CBS with MO-CBS
and CBS

Relationship of BB-MO-CBS and MO-CBS The main
differences between BB-MO-CBS and MO-CBS are:

• Searching a single constraint tree with the branching fac-
tor of two: In MO-CBS, each node contains one joint
path, while BB-MO-CBS introduces a new notion of
nodes where each node contains a set of undominated
joint paths. Correspondingly, MO-CBS searches multi-
ple constraint trees with varying branching factors of at
least two (but which are often larger than two), while
BB-MO-CBS searches only one constraint tree with the
constant branching factor of two.

• Ignoring dominated joint paths: During the search, while
MO-CBS has to consider all joint paths for conflict res-
olution,4 BB-MO-CBS considers only a maximal sub-
set of undominated joint paths in each node for con-
flict resolution, since the dominated joint paths are dis-
carded in NonDomJointPath (Line 26 in Alg. 2). Only
BB-MO-CBS is able to leverage NonDomJointPath dur-
ing the search due to its new high-level search.

• Incurring negligible computational overhead per node:
In each iteration, MO-CBS resolves a conflict by updat-
ing a single joint path, while BB-MO-CBS resolves a
conflict by updating multiple joint paths. During this up-
date, BB-MO-CBS incurs a computational overhead over
MO-CBS due to procedure NonDomJointPath (which is
not used in MO-CBS). However, with the help of Kung’s
method, this overhead is small, as our experiments show.

Relationship of BB-MO-CBS and CBS We consider
that BB-MO-CBS is “more similar” to CBS than to
BB-MO-CBS in the following sense.

• Both CBS and BB-MO-CBS build a single constraint tree
with the branching factor of two.

• While each node in BB-MO-CBS contains multiple joint
paths (instead of one), BB-MO-CBS uses the first joint
path as the representative joint path of the node. If we
consider the representative joint path in BB-MO-CBS as
the counterpart of the joint path in CBS, then the high-
level searches of CBS and BB-MO-CBS are analogous
(e.g., with respect to how the costs of nodes are computed
or how conflicts are resolved), except that BB-MO-CBS
exhausts OPEN before termination while CBS terminates
when it finds the first solution.

5 Analysis
We prove that BB-MO-CBS computes the Pareto-optimal
frontier C∗. A joint path is consistent with a set of constraints
Ω if the joint path satisfies every constraint in Ω.

4Intuitively, if dominated joint paths were pruned in MO-CBS,
it means the corresponding individual paths in these nodes are dis-
carded. When MO-CBS later generates a child node and replan the
paths for an agent, MO-CBS may lose solutions that consist of the
pruned paths of the other agents and the new path of this agent.
This makes the MO-CBS incomplete.

Definition 3 (CVN set) Given an arbitrary set of cost vec-
tors C and a node P with constraint set Ω, let CVN(P, C) be
the set of all joint paths π that (i) are consistent with Ω, (ii)
are conflict-free (i.e., valid), and (iii) have cost vectors g⃗(π)
that are not weakly dominated by any cost vector in C.

Correspondingly, a node P permits a joint path π with re-
spect to C iff π ∈ CVN(P, C). For the rest of this section,
let Pk = (Πk, πk,rep, g⃗k,rep,Ωk, {Πi

k}) denote a node that
is popped from OPEN for processing in the k-th iteration in
Alg. 2 and Ck denote the set of solution cost vectors com-
puted till the beginning of the k-th iteration of the search.

Lemma 1 Every time when Alg. 2 reaches Line 12, for every
joint path π′ ∈ CVN(Pk, Ck), there exists a joint path πk ∈
Πk such that g⃗(πk) ⪯ g⃗(π′).

Proof 1 In Pk, Πi
k for every agent i ∈ I is computed by

the low-level search and is thus guaranteed to be a maxi-
mal subset of all cost-unique Pareto-optimal paths that are
consistent with Ωk. Let Π′ = ND(Π1

k × Π2
k × · · · × ΠN

k ).
Then, for any joint path π that is consistent with Ωk, ∃π′ ∈
Π′, g⃗(π′) ⪯ g⃗(π) (Claim 1). Πk in Pk is initialized to Π′

when Pk is generated on Line 26. A joint path in Πk is
then deleted only if (i) it is added to Ck on Lines 14 and
15 or (ii) its cost is weakly dominated by a cost vector in
Ck (Line 6). Therefore, given a joint path π′ ∈ Π′, either
π′ ∈ Πk or ∃c⃗ ∈ Ck, c⃗ ⪯ g⃗(π′). Combined with Claim 1, we
know that, given a joint path π that is consistent with Ωk,
either ∃πk ∈ Πk, g⃗(πk) ⪯ g⃗(π) or ∃c⃗ ∈ Ck, c⃗ ⪯ g⃗(π).
Since, by definition, any joint path π′ ∈ CVN(Pk, Ck) is
consistent with Ωk and ∄c⃗ ∈ Ck, c⃗ ⪯ g⃗(π′), we know that
∃πk ∈ Πk, g⃗(πk) ⪯ g⃗(π′).

Lemma 2 At the beginning of a search iteration, for every
Pareto-optimal solution π∗ with g⃗(π∗) ∈ C∗\Ck, there exists
a node P in OPEN that permits π∗ with respect to Ck.

Proof 2 We prove this lemma by induction. After the initial-
ization, OPEN contains only the root node Po, which has an
empty constraint set Ωo. Po thus permits any conflict-free
joint path with respect to Co since Co and Ωo are empty. At
the beginning of the k-th iteration, assume that there is a
node P ′ in OPEN that permits π∗ with respect to Ck. If P ′

is not popped from OPEN (i.e., the popped node Pk does
not permit π∗ with respect to Ck), then P ′ is still in OPEN
after the iteration and still permits π∗ with respect to the
new Ck (i.e., Ck+1) after the iteration. Therefore the lemma
holds. Otherwise, there are three cases. First, some joint
paths in Πk are filtered (Lines 6-11). Because of Lemma 1
and because π∗ ∈ CVN(Pk, Ck), Πk cannot be empty af-
ter the filtering. Pk is thus re-inserted into OPEN, and the
lemma holds, Second, πk,rep is conflict-free (Lines 13-19). If
πk,rep = π∗, then g⃗(π∗) is added to Ck (i.e., g⃗(π∗) /∈ C∗\Ck)
and the lemma holds. If πk,rep ̸= π∗, then Pk is re-inserted
into OPEN (since Πk contains at least π∗ and cannot be
empty) and the lemma holds. Third, Alg. 2 branches on Pk

to resolve a conflict (Lines 12 and 20-29). Two constraints
ωi and ωj and two new corresponding nodes Pli and Plj are
created. π∗ cannot violate both ωi and ωj (because, other-
wise, π∗ would not be conflict-free). Thus, π∗ does not vio-
late at least one of the two constraints (say ωi), and the cor-



responding node Pli permits π∗. Both nodes are then added
to OPEN, and the lemma holds.

Lemma 3 Every time when Alg. 2 reaches (and before exe-
cuting) Line 14, g⃗k,rep cannot be weakly dominated by any
g⃗ ∈ Ck (i.e., ∄g⃗ ∈ Ck, g⃗ ⪯ g⃗k,rep).

Proof 3 This lemma holds because of Lines 6-11 in Alg. 2.
In other words, if g⃗k,rep is weakly dominated by some g⃗ ∈
Ck, g⃗k,rep is discarded before reaching Line 14.

Lemma 4 During the search, Ck ⊆ C∗.

Proof 4 Initially, Co is empty and Co ⊆ C∗. Assume that,
in the k-th iteration, Ck ⊆ C∗ and a representative vec-
tor g⃗k,rep of node Pk is added to Ck. Since Πk is a sub-
set of ND(Π1

k × Π2
k × · · · × ΠN

k ), we know that ∄πk ∈
Πk, g⃗(πk) ≺ g⃗k,rep. Additionally, since g⃗k,rep is the lexi-
cographic minimum among the representative vector of all
nodes in OPEN and the representative vector of a node is the
lexicographic minimum of the cost vectors of all joint paths
in that node, g⃗k,rep cannot be dominated by the cost vector
of any joint path in any other nodes in OPEN (Claim 2). As-
sume g⃗k,rep is not Pareto-optimal, we know that ∃g⃗∗ ∈ C∗,
g⃗∗ ≺ g⃗k,rep. Because of Lemma 3, we know that g⃗∗ /∈ Ck,
and therefore g⃗∗ ∈ C∗\Ck. Because of Lemmata 1 and 2,
there exists a joint path πl in some node Pl in OPEN with
g⃗(πl) ⪯ g⃗∗ ≺ g⃗k,rep, which contradicts Claim 2. Thus,
g⃗k,rep is Pareto-optimal. After g⃗k,rep is added to Ck, let Ck+1

denote the new set. Then, Ck+1 ⊆ C∗.

Theorem 1 For a feasible instance (i.e., an instance with at
least one solution), Ck is the Pareto-optimal frontier when
BB-MO-CBS terminates and every g⃗ ∈ Ck is unique.

Proof 5 From Lemma 4, we know that Ck ⊆ C∗ when
BB-MO-CBS terminates. From Lemma 2, we know that
C∗\Ck = ∅ when OPEN is empty, i.e., when BB-MO-CBS
terminates. Hence, Ck = C∗ when BB-MO-CBS terminates.
Because of Lemma 3, every g⃗ ∈ Ck is unique.

Theorem 2 For a feasible instance, BB-MO-CBS termi-
nates in finite time.

Proof 6 The proof of Lemma 4 in (Ren, Rathinam, and
Choset 2022) applies to BB-MO-CBS.

6 Experimental Results
We run experiments on a Ubuntu 20.04 laptop with an In-
tel Core i7-11800H 2.40GHz CPU and 16GB RAM without
multi-threading or compiler optimization flags. We imple-
ment our BB-MO-CBS in C++5 and compare it against the
online C++ implementation of MO-CBS-t in (Ren, Rathi-
nam, and Choset 2022). We implement BB-MO-CBS based
on the MO-CBS-t implementation and keep them as similar
as possible. For both BB-MO-CBS and MO-CBS-t, we im-
plement the low-level search with BOA* (Hernández et al.
2023) for bi-objective instances and EMOA* (Ren et al.
2022) for instances with more than two objectives. We se-
lect (grid) maps from different categories (e.g., room-like,
maze-like, etc.) from the MAPF benchmark set (Stern et al.

5https://github.com/wonderren/public bbmocbs

Figure 3: Comparison of BB-MO-CBS with and without
NonDomJointPath. It shows the efficiency (i.e., higher suc-
cess rates) of considering only the undominated joint paths
during the search in BB-MO-CBS.

2019). For each map, 25 instances provide initial location-
destination pairs for all agents. For each map, we generate
a four-neighbor undirected graph G. We create cost vectors
for its edges by sampling each element of a cost vector ran-
domly from {1, 2}, similar to (Pulido, Mandow, and Pérez-
de-la Cruz 2015; Ren, Rathinam, and Choset 2022). We run
experiments with two and three objectives and use a runtime
limit of 300 seconds for each instance.

6.1 Computing Undominated Subset
We compared the two implementations of NonDomJoint-
Path: using Kung’s method (Kung, Luccio, and Preparata
1975) and using a naive method (denoted as Naive) as dis-
cussed in Sec. 4.2, with two objectives. We run instances
with up to N = 16 agents on the Random 32x32 and
den312d 65x81 maps. We observe that, Naive can take up
to about one second per call on average for some instance,
while Kung can reduce this number to about 0.05 seconds.

6.2 BB-MO-CBS With and Without
Undominated Subset

We compared BB-MO-CBS with and without Non-
DomJointPath on the Random 32x32 map. Specifically,
“without NonDomJointPath” means that on Line 26 in
Alg. 2, all combination of Πi

l over all agents i ∈ I are con-
sidered without discarding the dominated joint paths. First,
this baseline runs out of the 16GB RAM for some instances
when N = 14 as it has to create joint paths corresponding
to all combinations of individual paths. Second, as shown
in Fig. 3, BB-MO-CBS achieves higher success rates than
this baseline and manages to expand more nodes before the
runtime limit is reached.

6.3 BB-MO-CBS versus MO-CBS-t: Success
Rates

We compared the success rates of our BB-MO-CBS and
the existing MO-CBS-t in four maps of different types and
sizes with two objectives. As shown in Fig. 4, BB-MO-CBS
achieves higher success rates than MO-CBS-t in all exper-
imental settings. BB-MO-CBS often doubles or triples the



Figure 4: Success rates for the existing MO-CBS-t and our
BB-MO-CBS on four maps with two objectives. The left
vertical axis shows the success rate. The right vertical axis
shows the average number of Pareto-optimal solutions found
by BB-MO-CBS within the runtime limit.

success rates of the baseline. Fig. 4 also shows the max-
imum/median/minimum numbers of solutions of each in-
stance computed by BB-MO-CBS within the runtime limit.
Even if BB-MO-CBS does not terminate within the run-
time limit, the computed solutions are still Pareto-optimal.
We also compare BB-MO-CBS and MO-CBS-t on the
Random 32x32 map with three objectives. Fig. 5 shows
that BB-MO-CBS again achieves higher success rates than
MO-CBS-t.

6.4 BB-MO-CBS versus MO-CBS-t: Resolved
Conflicts

We compared the numbers of resolved conflicts of
BB-MO-CBS and MO-CBS-t on the Random 32x32 map
with two objectives. Since a conflict (e.g. (i, j, v, t)) can be
resolved many times during a search, we show the maxi-
mum/median/minimum (over 25 instances for each N ) of
both the numbers of all conflicts per instance and the num-
bers of unique conflicts per instance resolved by both al-
gorithms in Fig. 6. As Fig. 6 shows, BB-MO-CBS resolves
up to about two orders of magnitude fewer conflicts than
MO-CBS-t. For example, for N = 6, BB-MO-CBS and
MO-CBS-t achieve similar success rates, but BB-MO-CBS

Figure 5: Success rates of the existing MO-CBS-t and our
BB-MO-CBS on the Random 32x32 map with three objec-
tives. The labels are the same as in Fig. 4.

Figure 6: Numbers of conflicts resolved by MO-CBS-t
and BB-MO-CBS on the Random 32x32 map. The bar-
with-cross (and the bar-with-star) markers show the maxi-
mum/median/minimum (over 25 instances) of the total num-
ber of conflicts per instance (and the number of unique con-
flicts per instance) resolved by the algorithms.

resolves at most 100 conflicts while MO-CBS-t resolves at
most 10,000 conflicts. As Fig. 6 also shows, BB-MO-CBS
and MO-CBS-t resolve about the same numbers of unique
conflicts for N = 6. Thus, the efficiency gain of
BB-MO-CBS is due to it not resolving the same conflicts
repeatedly.

7 Conclusions and Future Work
This paper developed a new algorithm BB-MO-CBS to find
the Pareto-optimal frontier for the MA-MO-PF problems.
Different from MO-CBS, BB-MO-CBS (i) uses a new high-
level search to update multiple joint paths intelligently when
a conflict is resolved and is able to reduce the branching fac-
tor to the small constant of two; and (ii) is able to discard
dominated joint paths during the search and thus avoids the
duplicated conflict resolution effort for the discarded joint
paths. Consequently, BB-MO-CBS runs significantly faster
than MO-CBS. We verify the advantage of BB-MO-CBS
over MO-CBS experimentally.

It is future work to leverage the conflict resolution tech-
niques from CBS, such as (Li et al. 2021; Zhang et al. 2022),
or improve the low-level search, to expedite the search pro-
cess of BB-MO-CBS further.
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