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Abstract

This work addresses a Multi-Objective Shortest Path Prob-
lem (MO-SPP) on a graph where the goal is to find a set of
Pareto-optimal solutions from a start node to a destination
in the graph. A family of approaches based on MOA* have
been developed to solve MO-SPP in the literature. Typically,
these approaches maintain a “frontier” set at each node during
the search process to keep track of the non-dominated, partial
paths to reach that node. This search process becomes compu-
tationally expensive when the number of objectives increases
as the number of Pareto-optimal solutions becomes large. In
this work, we introduce a new method to efficiently main-
tain these frontiers for multiple objectives by incrementally
constructing balanced binary search trees within the MOA*
search framework. We first show that our approach correctly
finds the Pareto-optimal front, and then provide extensive
simulation results for problems with three, four and five ob-
jectives to show that our method runs faster than existing
techniques by up to an order of magnitude.

Introduction
Given a graph with non-negative scalar edge costs, the well-
known shortest path problem (SPP) requires computing a
minimum-cost path from the given start node to a destination
node in the graph. This work considers the so-called Multi-
Objective Shortest Path Problem (MO-SPP) (Loui 1983;
Stewart and White 1991; Mandow and De La Cruz 2008),
which generalizes SPP by associating each edge with a non-
negative cost vector (of constant length), where each com-
ponent of the vector corresponds to an objective to be mini-
mized. MO-SPP arises in many applications including haz-
ardous material transportation (Erkut, Tjandra, and Verter
2007), robot design (Xu et al. 2021), and airport departure
runway scheduling (Montoya, Rathinam, and Wood 2013).

In the presence of multiple conflicting objectives, in gen-
eral, no (single) feasible path can simultaneously optimize
all the objectives. Therefore, the goal of MO-SPP is to find
a Pareto-optimal set (of solution paths), whose cost vectors
form the so-called Pareto-optimal front. A path is Pareto-
optimal (also called non-dominated) if no objective of the
path can be improved without deteriorating at least one of
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the other objectives. MO-SPP is computationally hard, even
for two objectives (Hansen 1980).

To solve MO-SPP, several multi-objective A* (MOA*)-
like planners (Stewart and White 1991; Mandow and
De La Cruz 2008; Ulloa et al. 2020; Goldin and Salzman
2021; Ahmadi et al. 2021) have been developed to com-
pute the exact or an approximated Pareto-optimal front. In
MO-SPP, there are in general, multiple non-dominated par-
tial solution paths between the start and any other node in
the graph, and MOA* planners memorize, select and ex-
pand these non-dominated paths at each node during the
search. When a new partial solution path π is found to reach
a node v, the path π needs to be compared with all previously
found non-dominated paths that reach v to check for dom-
inance: verify whether the accumulated cost vector along
π is dominated by the accumulated cost vector of any ex-
isting paths. These dominance checks are computationally
expensive, especially when there are many non-dominated
paths at a node, as it requires numerous cost vector compar-
isons (Pulido, Mandow, and Pérez-de-la Cruz 2015).

Recently, fast dominance check techniques (Pulido,
Mandow, and Pérez-de-la Cruz 2015; Ulloa et al. 2020)
were developed under the framework of MOA*-like search
to expedite these dominance checks. Among them, the Bi-
objective A* (BOA*) (Ulloa et al. 2020) achieves around
an order of magnitude speed up compared to the existing
MOA*-like search. Recently, BOA* has been further im-
proved in (Goldin and Salzman 2021) and (Ahmadi et al.
2021). However, BOA* as well as its improved versions are
limited to handle two objectives only. In this work, we pro-
vide a new approach to perform dominance checks relatively
fast that can handle an arbitrary number of objectives for
MOA*-like search.

Specifically, building on the existing fast dominance
check techniques (Pulido, Mandow, and Pérez-de-la Cruz
2015; Ulloa et al. 2020), we develop a new method called
Enhanced Multi-Objective A* (EMOA*) that uses a bal-
anced binary search tree (BBST) to store the non-dominated
partial solution paths at each node. The key ideas are: (i) the
BBST can be incrementally constructed during the MOA*
search, which makes it computationally efficient to main-
tain; (ii) the BBST is organized using the lexicographic
order between cost vectors, which can guide the domi-
nance checks and expedite the computation; (iii) the devel-
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oped BBST-based method is compatible with existing dom-
inance check approaches, which allows EMOA* to also in-
clude the existing techniques to speed up the computation
of the Pareto-optimal front. We also show that the existing
BOA* (Ulloa et al. 2020) is a special case of EMOA* when
there are only two objectives. We analyze the runtime com-
plexity of the proposed method and show that EMOA* can
find all cost-unique Pareto-optimal solutions. To verify our
approach, we run massive tests to compare EMOA* with
three baselines (NAMOA*-dr and two extensions of BOA*)
in various maps with three, four and five objectives. Our re-
sults show that EMOA* achieves up to an order of magni-
tude speed-up compared to all the baselines on average, and
is particularly advantageous for problem instances that have
a large number of Pareto-optimal solutions.

Problem Description
Let G = (V,E,~c) denote a graph with vertex set V and
edge set E, where each edge e ∈ E is associated with a
non-negative cost vector ~c(e) ∈ (R+)M with M being a
positive integer and R+ being the set of non-negative real
numbers. Let π(v1, v`) denote a path connecting v1, v` ∈ V
via a sequence of vertices (v1, v2, . . . , v`) in G, where vk
and vk+1 are connected by an edge (vk, vk+1) ∈ E, for
k = 1, 2, . . . , ` − 1. Let ~g(π(v1, v`)) denote the cost vec-
tor corresponding to the path π(v1, v`), which is the sum
of the cost vectors of all edges present in the path, i.e.
~g(π(v1, v`)) = Σk=1,2,...,`−1~c(vk, vk+1). To compare any
two paths, we compare the cost vector associated with them
using the dominance relation (Ehrgott 2005):
Definition 1 (Dominance) Given two vectors a and b of
length M , a dominates b (denoted as a � b) if and only
if a(m) ≤ b(m), ∀m ∈ {1, 2, . . . ,M}, and a(m) < b(m),
∃m ∈ {1, 2, . . . ,M}.
If a does not dominate b, this non-dominance is denoted as
a � b. Any two paths π1(u, v), π2(u, v), for two vertices
u, v ∈ V , are non-dominated (with respect to each other) if
the corresponding cost vectors do not dominate each other.

Let vo, vd denote the start and destination vertices respec-
tively. The set of all non-dominated paths between vo and
vd is called the Pareto-optimal set. A maximal subset of the
Pareto-optimal set, where any two paths in this subset do
not have the same cost vector is called a cost-unique Pareto-
optimal set. This paper considers the problem that aims to
compute a cost-unique Pareto-optimal set.

Preliminaries
Basic Concepts
Let l = (v,~g) denote a label1, which is a tuple of a ver-
tex v ∈ V and a cost vector ~g. A label represents a partial
solution path from vo to v with cost vector ~g. To simplify
notations, given a label l, let v(l), ~g(l) denote the vertex and

1To identify a partial solution path, different names such as
nodes (Ulloa et al. 2020), states (Ren, Rathinam, and Choset 2021;
Ren et al. 2022) and labels (Martins 1984; Sanders and Mandow
2013), have been used in the multi-objective path planning litera-
ture. This work uses “labels” to identify partial solution paths.

the cost vector contained in label l respectively. A label l is
said to be dominated by (or is equal to) another label l′ if
v(l) = v(l′) and ~g(l) � ~g(l′) (or ~g(l) = ~g(l′)).

Let ~h(v), v ∈ V denote a consistent heuristic vector of
vertex v that satisfies ~h(v) ≤ ~h(u) + ~c(u, v),∀u, v ∈ V .
Additionally, let ~f(l) := ~g(l) + ~h(v(l)), and let OPEN de-
note a priority queue of labels, where labels are prioritized
by their corresponding ~f -vectors in lexicographic order.

Finally, let α(u), u ∈ V denote the frontier set at vertex
u, which stores all non-dominated labels l at vertex u (i.e.
v(l) = u). Intuitively, each label l ∈ α(u), u ∈ V identifies
a non-dominated (partial solution) path from vo to u. See
Fig. 1 (a) for an illustration. For presentation purposes, we
also refer to α(vd) as S, the solution set, which is the frontier
set at the destination vertex, and each label in S identifies a
cost-unique Pareto-optimal solution (path).

Search Framework
To begin with, we reformulate BOA* (Ulloa et al. 2020) as
a general search framework as shown in Alg. 1, and explain
the running process. We then provide a technical review of
the existing algorithms NAMOA*-dr (Pulido, Mandow, and
Pérez-de-la Cruz 2015) and BOA* (Ulloa et al. 2020), and
discuss how our EMOA* differs from them.

Algorithm 1: Search Framework

1: lo ← (vo,~0)
2: Add lo to OPEN
3: α(v)← ∅,∀v ∈ V
4: while OPEN 6= ∅ do
5: l← OPEN.pop()
6: if FrontierCheck(l) or SolutionCheck(l) then
7: continue . Current iteration ends
8: UpdateFrontier(l)
9: if v(l) = vd then

10: continue . Current iteration ends
11: for all v′ ∈ GetSuccessors(v(l)) do
12: l′ ← (v′, ~g(l) + ~c(v, v′)), parent(l′)← l

13: ~f(l′)← ~g(l′) + ~h(v(l′))
14: if FrontierCheck(l′) or SolutionCheck(l′) then
15: continue . Move to the next successor.
16: Add l′ to OPEN
17: return α(vd) . α(vd) is also referred to as S

As shown in Alg. 1, to initialize (lines 1-3), an initial label
lo = (vo,~0) is created, and is added to OPEN. Additionally,
the frontier sets at all vertices are initialized to be empty
sets. In each search iteration (lines 5-16), the label with the
lexicographically minimum ~f -vector is popped from OPEN
and is denoted as l in Alg. 1. This label l is then (line 6)
checked for dominance via the following two procedures:
• First, l is compared with labels in α(v(l)) in procedure

FrontierCheck to verify if there exists a label in α(v(l))
that dominates (or is equal to) l.
• Second, l is compared with labels in S in procedure

SolutionCheck to verify if there exists a label l∗ in S
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such that g(l∗) dominates (or is equal to) ~f(l). Note that
~f(l∗) = ~g(l∗) as ~h(v(l∗)) = ~h(vd) = ~0.

If l is dominated in either FrontierCheck or SolutionCheck,
l is discarded and the current search iteration ends, because
l cannot lead to a cost-unique Pareto-optimal solution. Oth-
erwise (i.e. l is non-dominated in both FrontierCheck and
SolutionCheck), l is used to update the frontier set α(v(l))
(line 8): procedure UpdateFrontier first removes all the ex-
isting labels in α(v(l)) that are dominated by l, and then
adds l into α(v(l)). Note that this includes the case when
v(l) = vd, where α(vd) (i.e. S) is updated, which means a
solution path from vo to vd is found. After UpdateFrontier,
label l is verified whether v(l) = vd (line 9). If v(l) = vd,
the current search iteration ends (line 10); Otherwise, l is
expanded, as explained in the next paragraph.

To expand a label l (i.e. to expand the partial solution
path represented by label l), for each successor vertex v′

of v(l), a new label l′ = (v′, ~g(l) + ~c(v, v′)) is generated,
which represents a new path from vo to v′ via v(l) by ex-
tending l (i.e. the path represented by l). The parent pointer
parent(l′) is set to l, which helps reconstruct a solution path
for each label in α(vd) after the algorithm terminates. Then
(line 14), FrontierCheck and SolutionCheck are invoked on
label l′ to verify if l′ is dominated and should be discarded
or not. (Note that the dominance checks are needed at both
line 6 and 14, which is explained in the next subsection.) If l′
is non-dominated, l′ is added to OPEN for future expansion.

Finally (line 17), the search process terminates when
OPEN is empty, and returns α(vd), a set of labels, each of
which represents a cost-unique Pareto-optimal solution path.
Additionally, the cost vectors of labels in α(vd) form the en-
tire Pareto-optimal front of the given problem instance.

Brief Summary of NAMOA*-dr and BOA*
NAMOA*-dr (Pulido, Mandow, and Pérez-de-la Cruz 2015)
is a multi-objective search algorithm that can handle an ar-
bitrary number of objectives. The main differences between
NAMOA*-dr and Alg. 1 can be summarized in the follow-
ing two points. First, unlike Alg. 1, in NAMOA*-dr, when
a new label l′ is generated during the expansion, l′ will be
used for dominance checks against existing labels in OPEN
and frontier sets2 to remove labels that are dominated by l
(which happens between line 15 and 16 in Alg. 1 and is not
shown in Alg. 1 for presentation purposes). These checks
are called “eager checks” (Ulloa et al. 2020). With eager
checks, each popped label from OPEN is guaranteed to be
non-dominated, and lines 6-8 in Alg. 1 are thus skipped in
NAMOA*-dr. Second, a key idea in NAMOA*-dr is that,
with (i) consistent heuristics and (ii) an OPEN list where
labels are lexicographically prioritized, the first component
of the cost vectors can be ignored in some of the dominance
checks. This idea is referred to as the “dimensionality reduc-
tion” (Pulido, Mandow, and Pérez-de-la Cruz 2015), which
helps in speeding up the dominance checks in NAMOA*-dr.

2NAMOA*-dr maintains two frontier sets Gop(v) (open) and
Gcl(v) (closed) at each vertex v ∈ V , and we refer the reader
to (Ulloa et al. 2020; Pulido, Mandow, and Pérez-de-la Cruz 2015)
for more details.

Figure 1: Fig. (a) shows the frontier set α(v) at some vertex
v. There are five labels in α(v). The underlined three num-
bers of each ~g-vector indicate the corresponding projected
vector p(~g). Fig. (b) shows the corresponding balanced bi-
nary search tree. The keys of the nodes in this tree forms the
non-dominated subset of the projected vectors. The dashed
blue arrows show the sequence of tree nodes that are tra-
versed when running the FrontierCheck procedure (Alg. 2).
The projected vector (9, 9, 7) in the tree dominates the in-
put vector (9, 9, 9), which indicates that the new label l (in
blue) with ~g-vector (13, 9, 9, 9) is dominated and should be
discarded in EMOA* search.

BOA* (Ulloa et al. 2020) leverages the aforementioned
dimensionality reduction, and introduces the idea of “lazy
checks”, which avoids the eager checks as in NAMOA*-dr.
Specifically, BOA* follows the search process as shown in
Alg. 1, where lines 6-8 in Alg. 1 help defer the eager checks
related to a label l until l is going to be expanded. With the
help of this lazy check technique, BOA* guarantees that all
dominance checks can be performed in constant time for a
bi-objective problem which leads to speeding up the overall
search process. Specifically, the three key procedures Fron-
tierCheck, SolutionCheck and UpdateFrontier as shown in
Alg. 1 can be conducted in constant time in BOA*.

Our approach EMOA* also follows the same framework
as shown in Alg. 1, and inherits the ideas of dimensional-
ity reduction and lazy check. However, EMOA* realizes the
three key procedures by incrementally building balanced bi-
nary search trees, which can handle an arbitrary number of
objectives (Fig. 1). This leads to up to an order of magnitude
speed-up in comparison with the existing baselines.

Enhanced Multi-Objective A*

This section shows how EMOA* realizes FrontierCheck, So-
lutionCheck and UpdateFrontier by leveraging balanced bi-
nary search trees (BBST). We begin by introducing a few
definitions and then elaborate the BBST-based procedures.
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The Check and Update Problems
Definition 2 (Dominance Check (DC) Problem) Given a
set B of K-dimensional non-dominated vectors and a new
K-dimensional vector b, the DC problem aims to verify
whether there exists a vector b′ ∈ B such that b′ ≤ b (i.e. b′
is component-wise no larger than b, which is equivalent to
b′ � b or b′ = b).

Definition 3 (Non-Dominated Set Update (NSU) Problem)
Given a setB ofK-dimensional non-dominated vectors and
a new K-dimensional vector b that is non-dominated by any
vectors in B, the NSU problem computes ND(B

⋃
{b}),

(i.e. the non-dominated subset of B
⋃
{b}).

The relationship between the aforementioned three proce-
dures and these two problems can be described as follows:

• In FrontierCheck, given a new label l and the frontier set
α(v(l)), an equivalent DC problem can be generated with
input b = ~g(l) and B = {~g(l′)|l′ ∈ α(v(l))}.
• Similarly, in SolutionCheck, given a new label l and the

frontier set α(v(l)), an equivalent DC problem can be
generated with b = ~f(l) and B = {~g(l′)|l′ ∈ α(vd)}.
• Finally, in UpdateFrontier, given a new label l and the

frontier set α(v(l)), an equivalent NSU problem can be
generated with b = ~g(l) and B = {~g(l′)|l′ ∈ α(v(l))}.

From now on, we focus on how to quickly solve DC and
NSU problems. Note that, a baseline method that solves the
DC problem runs a for-loop over each vector b′ ∈ B and
check if b′ ≤ b, which takes O(|B|K) time. A baseline
method that solves the NSU problem requires two steps: (i)
filter B by removing from B all vectors that are dominated
by b, and (ii) add b into B. Here, a naive method for step (i)
runs a for-loop over set B to remove all dominated vectors
and takes O(|B|K) time, and step (ii) takes constant time.
Consequently, the overall time complexity is O(|B|K).

Balanced Binary Search Trees (BBSTs)
To efficiently solve the DC and NSU problems, our method
leverages the BBST data structure. As a short review, let n
denote a node3 within a binary search tree (BST) with the
following attributes:

• Let n.height denote the height of node n, which is the
number of edges along the longest downwards path be-
tween n and a leaf node. A leaf node has a height of zero.
• Let n.key denote the key of n, which is aK-dimensional

vector in this work. To compare two nodes, their keys are
compared by lexicographic order.
• Let n.left and n.right denote the left child and the right

child of n respectively, which represent the left sub-tree
and the right sub-tree respectively.
• We say n = NULL if n does not exist in the BST. For

example, if n is a leaf node, then n.left = NULL and
n.right = NULL.

3For the rest of this work, for presentation purposes, the term
“vertex” is associated with the graph G and the term “node” is
associated with the balanced binary search tree.

In this work, we limit our focus to the AVL-tree, one of
the most famous balanced BSTs. An AVL-tree has the fol-
lowing property: for any node n within an AVL-tree, let
d(n) := n.left.height− h.right.height denote the differ-
ence between the height of the left and the right child node,
then AVL-tree is called “balanced” if d(n) ∈ {−1, 0, 1}.
To maintain balance at insertion or deletion of nodes, an
AVL-tree invokes the so-called “rotation” operations when
d(n) ≤ −2 or d(n) ≥ 2 and the tree is always balanced.
Consequently, given an AVL-tree of size N (i.e. containing
N nodes), the height of the root is bounded by O(logN).

BBST-Based Check Method
Given a set B of non-dominated vectors, let TB denote an
AVL-tree that stores all vectors in B as the keys of tree
nodes. Now, given a new vector b, the DC problem can be
solved via Alg. 2, which traverses the tree recursively while
running dominance comparison.

Specifically, Alg. 2 is invoked with Check(TB .root, b),
where TB .root denotes the root of the tree and b is the in-
put vector to be checked. As a base case (line 2), if the input
node n isNULL, the algorithm terminates and returns false,
which means b is non-dominated. When the input node is not
NULL, b is checked for dominance against n.key and re-
turns true if n.key ≤ b. Otherwise, the algorithm verifies if
b is lexicographically smaller than (denoted as <lex) n.key.

• (Case-1) If b <lex n.key, there is no need to traverse the
right sub-tree from n, since any node in the right sub-tree
of n cannot be component-wise no larger than b, and the
algorithm (recursively) invokes itself to traverse the left
sub-tree for dominance checks.
• (Case-2) Otherwise (i.e. b >lex n.key), the algorithm

first invokes itself to traverse the left sub-tree (line 9) and
then the right sub-tree (line 11) for dominance checks.
Note that, in this case, both child nodes need recursive
traversal to ensure correctness.

Algorithm 2: Check(n, b)

1: INPUT: n is a node in an AVL-tree and b is a vector
2: if n = NULL then
3: return false
4: if n.key ≤ b then
5: return true
6: if b <lex n.key then
7: return Check(n.left, b)
8: else . i.e. b >lex n.key
9: if Check(n.left, b) then . Removed in TOA*

10: return true . Removed in TOA*
11: return Check(n.right, b)

BBST-Based Update Method
Similarly, the NSU problem with input B (in the form of a
correpsonding BBST TB) and a non-dominated vector b, can
be solved by (i) invoking Alg. 3 to remove nodes with dom-
inated keys from the tree TB and (ii) insert the input (non-
dominated) vector b into the tree. Here, step (ii) is a regular
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AVL-tree insertion operation, which takes O(log|B|) time,
and we will focus on step (i) in the ensuing paragraphs.

Algorithm 3: Filter(n, b)

1: INPUT: n is a node in an AVL-tree and b is a vector
2: if n = NULL then
3: return NULL
4: if b >lex n.key then
5: n.right←Filter(n.right, b)
6: else
7: n.left←Filter(n.left, b)
8: n.right←Filter(n.right, b)
9: if b � n.key then

10: return AVL-Delete(n)
11: AVL-balancing() when needed.

For step (i), Alg. 3 is invoked with Filter(TB .root, b),
where TB .root denotes the root of the tree and b is the input
non-dominated vector. As shown in Alg. 3, as a base case
(line 2), if the input node is NULL, the algorithm termi-
nates and returns a NULL. When the input node n is not
NULL, the algorithm verifies whether b >lex n.key.
• (Case-1) If b >lex n.key, there is no need to filter the left

sub-tree of n (since any node in the left sub-tree of nmust
be non-dominated by b) and the algorithm recursively in-
vokes itself to traverse the right sub-tree for filtering.
• (Case-2) Otherwise (i.e. b <lex n.key)4, the algorithm

first invokes itself to traverse the left sub-tree (line 9) and
then the right sub-tree (line 11) for filtering. Note that, in
this case, both child nodes need to be traversed for further
dominance check to ensure correctness.

At the end (line 9-10), n.key is checked for dominance
against b. If n.key is dominated, n is removed from the tree.
The tree is also processed to ensure that the resulting tree
is still balanced (line 11). These are all common operations
related to AVL-trees. In the worst case, the entire tree is tra-
versed and all nodes in the tree are recursively deleted (from
the leaves to the root), which takes O(|B|K) time.
Remark. Theoretically, both Alg. 2 and 3 runs in O(|B|K)
time in the worst case, which is the same as the aforemen-
tioned baseline approaches (i.e. running a for-loop over B).
However, as shown in the result section, these BBST-based
methods can solve the DC and NSU problems much more
efficiently in practice. The intuitive reason behind such effi-
ciency is that, the AVL-tree is organized based on the lexico-
graphic order, which can provide guidance when traversing
the tree for dominance checks. As a result, only a small por-
tion of the tree is traversed. Finally, note that the method in
this section does not put any restriction on K.

EMOA* with BBST-Based Check and Update
This section presents how to use the BBST-based algo-
rithms (Alg. 2, 3) within the framework of Alg. 1. Specif-

4Note that it’s impossible to have b = n.key: Within the
EMOA* algorithm (Alg. 1), UpdateFrontier is always invoked af-
ter FrontierCheck. if b = n.key, FrontierCheck removes it and
UpdateFrontier will not be invoked (line 6-8 in Alg. 1).

ically, EMOA* leverages the idea of dimensionality reduc-
tion, which can expedite the BBST-based check and update.
EMOA* has the property that, during the search process, the
sequence of labels being expanded at the same vertex has
non-decreasing f1 values, where f1 represents the first com-
ponent of the ~f -vector of a label. This property is caused
by the fact that heuristics are consistent and all labels are se-
lected from OPEN by lexicographic order of their ~f -vectors.
Additionally, since all labels at the same vertex v have the
same ~h-vector, the sequence of labels being expanded at the
same vertex also has non-decreasing g1 values, where g1
represents the first component of the ~g.

To simplify presentation, let p : RM → RM−1 de-
note a projection function that removes the first compo-
nent from the input vector. During the EMOA* search,
when a new label l is generated, for FrontierCheck, we
only need to do dominance comparison between p(~g(l))
and p(~g(l′)),∀l′ ∈ α(v(l)), instead of comparing ~g(l) with
~g(l′),∀l′ ∈ α(v(l)). Consequently, in EMOA*, for each ver-
tex v ∈ V , a BBST TB as aforementioned is constructed
with B = ND({p(~g(l′)),∀l′ ∈ α(v)}). In other words, the
key of each node in TB is a non-dominated projected cost
vector of a label in α(v).

To realize FrontierCheck for a label l that is extracted
from OPEN (line 6 in Alg. 1), Alg. 2 is invoked with b =
p(~g(l)) and n being the root node of the tree TB . We pro-
vide a toy example for FrontierCheck in Fig. 1. Similarly,
for SolutionFilter (line 6 in Alg. 1), Alg. 2 is invoked with
b = p(~f(l)) and n being the root node of the tree TB′ with
B′ = ND({p(~g(l′)),∀l′ ∈ α(vd)}) (i.e. the set of all non-
dominated projected vectors of labels in the frontier set at
the destination node). During the search, when a label l is
extracted from OPEN and is used to update the frontier set
in procedure UpdateFrontier (line 8 in Alg. 1), Alg. 3 is first
invoked with ~b = p(~g(l)) and n being the root node of the
tree TB where B = ND({p(~g(l′)),∀l′ ∈ α(v(l))}). Then,
~b = p(~g(l)) is added to TB .

In summary, to realize procedures FrontierCheck, Solu-
tionCheck and UpdateFrontier, only the projected vectors
of labels are needed, instead of the original vectors.

Generalization of BOA*
EMOA* generalizes BOA* in the following sense. When
M = 2, for any cost vector ~g in a label, the projected vector
p(~g) is of length one and is thus a scalar value. In this case,
the AVL-tree corresponding to α(v) of any vertex v ∈ V in
EMOA* becomes a singleton tree: a tree with a single root
node TB .root. The key value of TB .root is the minimum
value of g2(l) among all labels l ∈ α(v), which is the same
as the auxiliary variable gmin

2 introduced at each vertex in
BOA*. Solving a DC problem requires only a scalar com-
parison between TB .root.key and the scalar p(~g), the pro-
jected cost vector of the label selected from OPEN in each
search iteration. Clearly, this scalar comparison takes con-
stant time. Additionally, the UpdateFrontier in EMOA* re-
quires simply assigning the scalar p(~g) to TB .root.key (i.e.
g2min), which also takes constant time. Therefore, BOA* is
a special case of EMOA* when M = 2.
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Tri-Objective A* (TOA*)
When M = 3, EMOA* can be further improved to achieve
better theoretic runtime complexity when running Alg. 2.
We name this improved algorithm TOA* (Tri-Objective
A*). TOA* differs from EMOA* as follows: line 9-10 in
Alg. 2 are removed. In other words, when M = 3, each pro-
jected vector b as well as the key of all nodes in the tree TB
have length (M − 1) = 2. In this case, during the compu-
tation of Alg. 2, when b >lex n.key (i.e. line 8 in Alg. 2),
there is no need to further traverse the left sub-tree.
Theorem 1 Given b, a two dimensional vector, and an arbi-
trary node n in TB , if (i) n.key � b and (ii) b >lex n.key,
then the key of any nodes in the left sub-tree of n cannot
dominate b.

Please find the proof in the appendix.
In TOA*, the modified Alg. 2 traverses the tree either to

the left sub-tree (when b <lex n.key) or to the right sub-
tree (when b >lex n.key), which leads to a time complexity
of O(log|B|) (note that M is a constant here). We say that
TOA* is an improved version of EMOA* with M = 3 since
the theoretic computational complexity is improved. Finally,
we summarize the computational complexity of the Check
and Update procedures in BOA* (Ulloa et al. 2020) and our
algorithms (TOA* and EMOA*) in Table 1.

BOA* TOA* EMOA*
M = 2 = 3 ≥ 2
Check Constant Time O(log|B|) O(|B|(M − 1))
Update Constant Time O(|B|) O(|B|(M − 1))

Table 1: Runtime complexity of related methods. BOA* is
a special case of EMOA* when M = 2, and TOA* is an
improved version of EMOA* when M = 3.

Analysis of EMOA*
To save space, we provide the proofs in the appendix.

Lemma 1 When expanding a label l, each successor label
l′ has f1 value no smaller than the f1 value of l.

Lemma 2 During the search of Alg. 1, the sequence of ex-
tracted labels from OPEN has non-decreasing f1 values.

Corollary 1 During the search, the sequence of extracted
and expanded labels at a specific vertex has non-decreasing
f1 and g1 values.

Corollary 2 During the search, for a label l that is ex-
tracted from OPEN, we have ~g(l′) ≤ ~g(l), l′ ∈ α(v(l)) if
and only if p(~g(l′)) ≤ p(~g(l)), l′ ∈ α(v(l)).

Theorem 2 EMOA* computes a maximal set of cost-unique
Pareto-optimal paths connecting vo and vd at termination.

Numerical Results
Baselines and Implementation
To verify the performance of EMOA* and TOA*, we in-
troduce three baselines for comparison. The first baseline
is NAMOA*-dr (Pulido, Mandow, and Pérez-de-la Cruz

2015), which is an algorithm in the literature that can handle
an arbitrary number of objectives.

We propose a second baseline, which is an extension of
BOA* to handle more than two objectives (hereafter re-
ferred to as ext-BOA* for simplicity). Specifically, the Fron-
tierCheck, SolutionCheck and UpdateFrontier procedures
are implemented with a naive for-loop as aforementioned in
section “The Check and Update Problems”. Furthermore, at
each node v, a list Q(v) that consists of the non-dominated
projected ~g-vectors of the labels in the frontier set α(v) is
introduced, and those three procedures run for-loops to con-
duct dominance comparisons between the projected vector
of the input label and each of the project vectors in Q(v).

We propose a third baseline, which is an “optimized” ver-
sion of ext-BOA* and is referred to as ext-BOA*-lex, where
Q(v) at each node v is further sorted with the lexicographic
order from the minimum (i.e. lex. min.) to the maximum
(i.e. lex. max.). In FrontierCheck (and SolutionCheck), to
check whether an input label l is dominated or not, the pro-
cedure loops from the lex. min. to the lex. max. ofQ(v) (and
Q(vd)) and stops at the first vector in Q(v) (and Q(vd)) that
dominates p(~g(l)) (and p(~f(l)) respectively). Similarly, in
UpdateFrontier, to filter Q(v) with an input non-dominated
label l, the procedure first loops from the lex. max. to the
lex. min. and stops at the first vector in the list that is lexico-
graphically less than p(~g(l)). Then UpdateFrontier finds the
right place to insert p(~g(l)) into Q(v) to ensure that Q(v)
is still lexicographically sorted. We call it an optimized ver-
sion as we take the view that, by running a for-loop over a
lexicographically sorted list, the for-loop may stop earlier,
and thus the overall search is expedited.

We implement all algorithms in C++ and test on a
Ubuntu 20.04 laptop with an Intel Core i7-11800H 2.40GHz
CPU and 16 GB RAM without multi-threading.5 For a M -
objective problem, the heuristic vectors are computed by
running M backwards Dijkstra search from vd: the m-th
Dijkstra search (m = 1, 2, . . . ,M ) uses edge cost values
cm(e),∀e ∈ E (i.e. the m-th component of the cost vector
~c(e) of all edges). The time to compute heuristics is negli-
gible in comparison with the overall runtime, and we report
the runtime of the algorithm that excludes the time for com-
puting heuristics. Finally, note that EMOA* with M = 2
is the same as BOA* (Ulloa et al. 2020), which has been
investigated.

Experiment 1: Empty Map with M = 3, 4, 5

We begin by testing TOA* (M = 3) and EMOA* (M =
4, 5) against three baselines in a small obstacle-free four-
connected grid of size 10× 10 with vo locating at the lower
left corner and vd locating at the upper right corner. Each
component of the edge cost vector is randomly sampled
from the integers within [1, 10], which follows the conven-
tion in (Pulido, Mandow, and Pérez-de-la Cruz 2015), and
50 instances are generated. We plot the the runtime (verti-
cal axis) against the number of cost-unique Pareto-optimal
solutions (horizontal axis) for each instance in Fig. 2.

5Our software is at https://github.com/wonderren/public emoa
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Figure 2: Performance comparison between TOA*/EMOA* (ours) and the baselines (NAMOA*-dr, ext-BOA*, ext-BOA*-lex)
in an empty 10 × 10 map. The runtime (seconds) of each instance is visualized against the number of cost-unique Pareto-
optimal solutions of the instance in Fig (a,c,e). TOA*/EMOA*, ext-BOA* and ext-BOA*-lex all follows Alg. 1 and have the
same number of expansions (#Exp). Rows with #DC in (b,d,f) shows the number of dominance checks required by each of the
algorithms. To summarize, TOA*/EMOA* reduce the number of dominance checks during the search, and run up to an order
of magnitude faster than the baselines. Note that the runtime axis is in log scale.

As shown in Fig. 2 (a,c,e), our TOA*/EMOA* expedites
the overall search process for up to about an order of mag-
nitude for all M = 3, 4, 5 in comparison with the base-
lines. Additionally, the speed-up provided by our methods
becomes more obvious as the number of Pareto-optimal so-
lutions increases, which indicates that TOA*/EMOA* are
particularly advantageous when the given problem instance
has numerous Pareto-optimal solutions. Fig. 2 (a,c,e) also
show that ext-BOA*-lex slightly expedites the search pro-
cess in comparison with ext-BOA* in general, which indi-
cates that sorting Q(v) by lexicographic order can expedite
dominance checks within Alg. 1. However, this expedition
is negligible when comparing with our methods, which veri-
fies the benefits of constructing balanced binary search trees
to organize the frontier set at vertices.

In Fig. 2 (b,d,f), Row #Exp shows the number of
expansions required by ext-BOA*, ext-BOA*-lex and
TOA*/EMOA*. Note that all these three approaches follow
the same workflow as shown in Alg. 1 and thus have the
same number of expansions during the search. NAMOA*-
dr is omitted due to its relatively high runtime. Rows with
#DC show the numbers of dominance checks required by
the algorithms during the search. We can observe that
TOA*/EMOA* significantly reduces the number of domi-
nance checks. Note that #DC serves only as a reference here,
and its not an accurate indicator of the computational bur-
den for the following two reasons. First, the actual imple-
mentation of dominance checks runs a for-loop over compo-

nents of vectors, and this for-loop terminates without reach-
ing the last component when non-dominance is verified.
This makes each dominance check operation have vary-
ing computational efforts. Second, in TOA*/EMOA*, the
component-wise scalar comparison required when travers-
ing the balanced binary search trees is not counted as domi-
nance checks.

Experiment 2: Three Objectives in Various Maps
We then fix M = 3 and test the algorithms in two (grid)
maps selected from a online data set (Stern et al. 2019). We
make each grid map four-connected, and sample each com-
ponent of the edge cost vector randomly from the integers
within [1, 10].

As shown in Fig. 3, TOA* runs faster than the baselines
when there are a lot of Pareto-optimal solutions (e.g. > 30).
When the number of Pareto-optimal solutions is small, the
runtime of TOA* is similar to or slower than ext-BOA*-lex.
It indicates that for problem instances with a small number
of Pareto-optimal solutions, our method may not be the best
choice to solve the problem. But it’s also worthwhile to note
that those instances are in general not challenging, as they
can be solved by either of the four approaches within 0.1
seconds.

Experiment 3: City Road Network
Finally, we evaluate TOA* and the baselines in the New
York City map (a graph with 264,346 vertices and 733,846
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Figure 3: Comparison between TOA* (ours) and the base-
lines in various maps. The search time of each instance is
visualized against the number of cost-unique Pareto-optimal
solutions of the instance. TOA* runs up to an order of mag-
nitude faster than the baselines due to the reduced number
of dominance checks. Note that the runtime axis is in log
scale.

edges) from a online data set.6 This data set provides dis-
tance (c1) and travel time (c2) for each edge. We intro-
duce a third type of cost as follows (which is determinis-
tic and reproducible). Let deg(v) denote the degree (num-
ber of adjacent vertices) of v ∈ V , and let deg(e) :=
deg(u)+deg(v)

2 , e = (u, v) ∈ E. If deg(e) ≥ 4, c3(e) = 2,
otherwise c3(e) = 1. The design of c3 is motivated by haz-
ardous material transportation (Erkut, Tjandra, and Verter
2007), where the transportation over busy edges can lead
to higher risk if leakage happens, and deg(e) is an indica-
tor about how busy an edge is. We discuss the results in the
caption of Table 2 and provide an illustration of the Pareto-
optimal solutions in Fig. 4 in the Appendix.

Other Related Work
MO-SPP algorithms range from exact approaches (Stew-
art and White 1991; Mandow and De La Cruz 2008; Ulloa
et al. 2020) to approximation methods (Goldin and Salzman
2021; Perny and Spanjaard 2008; Warburton 1987), trad-
ing off solution optimality for computational efficiency. This
work belongs to the category of exact approaches.

Another related work is the Kung’s method (Kung, Luc-
cio, and Preparata 1975) which addresses the following
problem: Given an arbitrary set A of M dimensional vec-
tors (M ≥ 2), compute ND(A), the non-dominated subset
of A. The DC and NSU problems introduced in this work as

6http://www.diag.uniroma1.it//∼challenge9/download.shtml

Success/All (*) Mean/Median/Max RT
NAMOA*-dr 16/50 25.4 / 92.9 / 539.8
ext-BOA* 17/50 11.6 / 40.1 / 222.7
ext-BOA*-lex 17/50 9.7 / 33.7 / 188.8
TOA* (ours) 33/50 1.8 / 5.0 / 31.0

Table 2: This table shows number of succeeded instances
in New York City map from a online data set. Symbol (*)
means the mean/median/max runtime (RT) are taken over
the 16 instances where all four algorithms succeed. The
mean, median and maximum number of Pareto-optimal so-
lutions for those 16 instances are 389, 327 and 1061 respec-
tively. The minimum runtime is omitted as there exists a triv-
ial instance with only one Pareto-optimal solution and all al-
gorithms terminate within a few micro-seconds. Our TOA*
doubles the number of succeeded instances within a limited
runtime of 600 seconds. Over the 16 solved instances, TOA*
requires about 1/6 of the runtime of ext-BOA*-lex.

mentioned in Def. 2 and 3 can be regarded as incremental
versions of the problem solved by Kung’s method, since the
frontier set is constructed in an incremental manner during
the MOA*-like search.

Conclusion
This work considers a Multi-Objective Shortest Path Prob-
lem (MO-SPP) with an arbitrary number of objectives. In
this work, we observe that, during the search process of
MOA*-like algorithms, the frontier set at each vertex is
computed incrementally by solving the Dominance Check
(DC) problem and Non-Dominated Set Update (NSU) prob-
lems iteratively. Based on this observation, we develop a
balanced binary search tree (BBST)-based approach to ef-
ficiently solve the DC and NSU problems in the presence
of an arbitrary number of objectives. With the help of the
BBST-based methods and the existing fast dominance check
techniques, we develop the Enhanced Multi-Objective A*
(EMOA*), which computes all cost-unique Pareto-optimal
paths for MO-SPP problems. EMOA* is a generalization of
BOA*. We also develop the TOA*, an improved version of
EMOA* when there are three objectives. We discuss the cor-
rectness and the computational complexity of the proposed
methods, and verify them with massive tests. The numerical
result shows that TOA* and EMOA* runs up to an order of
magnitude faster than all the baselines, and are of particu-
lar advantage for problems with a large number of Pareto-
optimal solutions.
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Appendix
Proof of TOA*
Theorem 1 Given b, a two dimensional vector, and an arbi-
trary node n in TB , if (i) n.key � b and (ii) b >lex n.key,
then the key of any nodes in the left sub-tree of n cannot
dominate b.
Sketch Proof 1 Let subscript denote the specific component
within a vector. From (i) and (ii), we have b1 ≥ n.key1
and b2 < n.key2. For any node n′ in the left sub-tree of
n, by construction of the tree, n′ <lex n and thus n′.key1 ≤
n.key1. Additionally, by definition, the key of every pair of
nodes in TB are non-dominated and non-equal to each other,
thus n′.key2 > n.key2. Put them together, we have

b2 < n.key2 < n′.key2.

Thus, b is not dominated by n′.key. Since n′ can be any
nodes in the left sub-tree of n, the theorem is proved.

Proof of EMOA*
During the search process, at line 5 of Alg. 1, we say a label
is extracted from OPEN. At line 11 of Alg. 1, we say a label
is expanded. Clearly, the set of expanded labels during the
search is a subset of extracted labels. Additionally, at line 12
of Alg. 1, we say a new label is generated.
Lemma 1 When expanding a label l, each successor label
l′ has f1 value no smaller than the f1 value of l.

Sketch Proof 2 As ~h-vectors (of labels) are consistent,
c1(v(l), v(l′)) + h1(v(l′)) ≥ h1(v(l)). Therefore, f1(l′) =
g1(l′) + h1(v(l′)) = g1(l) + c1(v(l), v(l′)) + h1(v(l′)) ≥
g1(l) + h1(v(l)) = f1(l).
Lemma 2 During the search of Alg. 1, the sequence of ex-
tracted labels from OPEN has non-decreasing f1 values.
Sketch Proof 3 In each search iteration, EMOA* extracts
the label l with the lexicographically minimum ~f , which
means l has the minimum f1 value among any other label
l′ in OPEN. With Lemma 1, any successor label l′′ to be
generated after the expansion of l (or l′) has no smaller f1
value than the f1 value of l (or l′). Therefore, the sequence of
extracted labels from OPEN has non-decreasing f1 values.
Corollary 1 During the search, the sequence of extracted
and expanded labels at a specific vertex has non-decreasing
f1 and g1 values.
As the sequence of extracted labels at a specific vertex is a
subset of all labels that are extracted from OPEN, this corol-
lary is obvious given Lemma 2.
Corollary 2 During the search, for a label l that is ex-
tracted from OPEN, we have ~g(l′) ≤ ~g(l), l′ ∈ α(v(l)) if
and only if p(~g(l′)) ≤ p(~g(l)), l′ ∈ α(v(l)).
Theorem 2 EMOA* computes a maximal set of cost-unique
Pareto-optimal paths connecting vo and vd at termination.
Sketch Proof 4 In each search iteration, Alg. 1 extracts a
label l from OPEN (line 5), whose ~f -vector is the lexico-
graphical minimum in OPEN. It means none of the remain-
ing labels in OPEN can dominate l. As procedures Fron-
tierCheck and SolutionCheck are correct: label l is dis-
carded if and only if it is dominated by or equal to some

other expanded labels, which means it can not lead to a cost-
unique Pareto-optimal solution (line 6-7). If label l is not
discarded, it is then added to the frontier set α(v(l)) (line
8), which ensures that α(v(l)) contains cost-unique non-
dominated labels. When Alg. 1 terminates, each of the labels
in α(vd) must represent a cost-unique Pareto-optimal solu-
tion. Finally, during the expansion, all possible successor la-
bels are generated and the non-dominated ones are inserted
into OPEN for future expansion. The algorithm terminates
only when all labels are either expanded or discarded, which
guarantees that all cost-unique Pareto-optimal solutions are
found.

Experiment 3: City Road Network Illustration
A subset of the computed Pareto-optimal solution paths for
a problem instance in the New York City map (with 264,346
vertices and 733,846 edges) is shown in Fig. 4.
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Figure 4: An illustration of a subset of the computed Pareto-optimal solution paths for a problem instance in the New York City
map.
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