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Abstract— Conventional multi-agent path planners typically
compute an ensemble of paths while optimizing a single
objective, such as path length. However, many applications
may require multiple objectives, say fuel consumption and
completion time, to be simultaneously optimized during plan-
ning and these criteria may not be readily compared and
sometimes lie in competition with each other. Naively applying
existing multi-objective search algorithms to multi-agent path
finding may prove to be inefficient as the size of the space
of possible solutions, i.e., the Pareto-optimal set, can grow
exponentially with the number of agents (the dimension of
the search space). This article presents an approach named
Multi-objective Conflict-based Search (MO-CBS) that bypasses
this so-called curse of dimensionality by leveraging prior
Conflict-based Search (CBS), a well-known algorithm for single-
objective multi-agent path finding, and principles of dominance
from multi-objective optimization literature. We prove that
MO-CBS is able to compute the entire Pareto-optimal set. Our
results show that MO-CBS can solve problem instances with
hundreds of Pareto-optimal solutions which the standard multi-
objective A* algorithms could not find within a bounded time.

I. INTRODUCTION

Multi-agent Path Finding (MAPF) computes a set of
collision-free paths for multiple agents connecting their
respective start and goal locations while optimizing a scalar
measure of paths. Variants of MAPF have been widely stud-
ied in the robotics community over the last few years [18].
In this article, we investigate a natural generalization of the
MAPF to include multiple objectives for multiple agents
and hence the name multi-objective multi-agent path finding
(MOMAPF). In MOMAPF, agents have to trade-off multiple
objectives such as completion time, travel risk and other
domain-specific measures (Fig. 1). MOMAPF is a general-
ization of MAPF and is therefore NP-Hard.

In the presence of multiple objectives, the goal of
MOMAPF is to find the set of all Pareto-optimal1 solutions
rather than a single optimal solution as in MAPF. Finding this
set of solutions while ensuring collision-free paths for agents
in each solution is quite challenging: even though there are
many multi-objective single-agent search algorithms [10],
[19], [22] that can compute all Pareto-optimal solutions,
a naive application of such algorithms to the MOMAPF
problem may prove to be inefficient as the size of the Pareto-
optimal set grows exponentially with respect to the number
of agents and the dimension of the search space [15], [26].
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2Sivakumar Rathinam is with Texas A&M University, College Station,
TX 77843-3123.

1A solution is Pareto-optimal if there exists no other solution that will
yield an improvement in one objective without causing a deterioration in at
least one of the other objectives.

Fig. 1: A toy example of the MOMAPF problem with two
objectives: minimizing total battery usage and gas costs.

Among the algorithms that optimally solve the single-
objective MAPF problems, conflict-based search (CBS) [16]
has received significant attention due to its computational
efficiency on average. This method has also been extended
to solve several other variants of MAPF as noted in [3],
[8]. However, we are not currently aware of any CBS or
other algorithms that can directly solve a MOMAPF to
optimality. This article takes a first step in addressing this
gap. By leveraging multi-objective dominance techniques [5],
we develop a new algorithm named multi-objective conflict-
based search (MO-CBS) that is able to compute the entire
Pareto-optimal set of collision-free paths with respect to
multiple objectives.

To bypass the curse of dimensionality, MO-CBS takes a
similar strategy as CBS to resolve conflicts along paths of
agents while extending CBS to handle multiple objectives.
MO-CBS begins by computing individual Pareto-optimal
paths for each agent ignoring agent-agent conflicts and letting
agents follow those paths. When a conflict between agents
is found along their paths, MO-CBS splits the conflict by
adding constraints to either agent’s individual search space
and calls a multi-objective single-agent planner to compute
new individual Pareto-optimal paths subject to those added
constraints. In addition, MO-CBS uses dominance rules to
select candidate solutions for conflict-checking and compare
them until all the candidates are either pruned or identified as
Pareto-optimal. To speed up the identification of the first so-
lution, we also developed a variant of MO-CBS named MO-
CBS-t, which uses a different candidate selection strategy.
Compared with existing approaches that are guaranteed to
find all Pareto-optimal solutions, such as A New Approach to
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Multi-Objective A* (NAMOA*) [10], the numerical results
show that the proposed MO-CBS outperforms NAMOA* in
terms of success rates under bounded time as well as average
run time for MOMAPF in general.
Related Work. MAPF methods [7], [17], [20], [24], [26]
range from centralized to decentralized, trading off com-
pleteness and optimality for scalability. Conflict-based search
(CBS) [16], a leading method in the middle of the spectrum,
have been improved [1], [2] and extended to many different
problems [3], [8], to name a few.

To optimize multiple objectives, dominance principles
from multi-objective optimization (MOO) [5] have been
applied to single agent path finding [10], [19], [22], motion
planning [21], reinforcement learning [13] and others [4],
[11], to name a few. With respect to MOO for multiple
agents, the only work we are aware of is on evolutionary
algorithms [25] for a related variant of MOMAPF considered
in this work. Specifically, in [25], the conflicts between the
agent’s paths is modeled in one of the objectives and not
as a constraint; as a result, a solution in the Pareto-optimal
set may have agent’s paths that conflict with each other. In
addition, the work in [25] enforces a pre-defined number of
waypoints to be visited in the middle of each agent’s path
and assumes no wait times for agents at any vertex in the
graph, which greatly reduces the size of the Pareto-optimal
set. In this work, we allow for agents to wait at any vertex
in the graph and seek conflict-free paths for agents in any
feasible solution as in the standard MAPF [18].

One of the basic challenges in multi-objective search is to
compute the entire set of Pareto-optimal solutions [5], [15].
To overcome this challenge, search algorithms like A* [6],
as a best-first search method, are extended to multi-objective
A* (MOA*) [19] and later improved in NAMOA* [10].
Even though MOA*-based approaches can be applied to
the product of the configuration spaces of agents, numerical
results in Sec. VI show that it is significantly less efficient
compared to the proposed MO-CBS.

II. PROBLEM FORMULATION

Let index set I = {1, 2, . . . , N} denote a set of N agents.
All agents move in a workspace represented as a finite graph
G = (V,E), where the vertex set V represents all possible
locations of agents and the edge set E = V ×V denotes the
set of all the possible actions that can move an agent between
any two vertices in V . An edge between two vertices u, v ∈
V is denoted as (u, v) ∈ E and the cost of an edge e ∈ E is
a M -dimensional non-negative vector cost(e) ∈ (R+)M\{0}
with M being a positive integer.

In this work, we use a superscript i, j ∈ I over a variable
to represent the specific agent that the variable belongs to
(e.g. vi ∈ V means a vertex with respect to agent i).
Let πi(vi1, v

i
`) be a path that connects vertices vi1 and vi`

via a sequence of vertices (vi1, v
i
2, . . . , v

i
`) in the graph G.

Let gi(πi(vi1, v
i
`)) denote the M -dimensional cost vector

associated with the path, which is the sum of the cost vectors
of all the edges present in the path, i.e., gi(πi(vi1, v

i
`)) =

Σj=1,2,...,`−1cost(vij , v
i
j+1).

All agents share a global clock and all the agents start
their paths at time t = 0. Each action, either wait or move,
for any agent requires one unit of time. Any two agents
i, j ∈ I are said to be in conflict if one of the following two
cases happens. The first case is a “vertex conflict” where
two agents occupy the same location at the same time. The
second case is an “edge conflict” where two agents move
through the same edge from opposite directions at times t
and t+ 1 for some t.

Let vio, v
i
f ∈ V respectively denote the initial location

and the destination of agent i. Without loss of generality,
to simplify the notations, we also refer to a path πi(vio, v

i
f )

for agent i between its initial and final locations as simply
πi. Let π = (π1, π2, . . . , πN ) represent a joint path for all
the agents, which is also called a solution. The cost vector
of this solution is defined as the vector sum of the individual
path costs over all the agents, i.e., g(π) = Σig

i(πi).
To compare any two solutions, we compare the cost

vectors corresponding to them. Given two vectors a and
b, a is said to dominate b if every component in a is no
larger than the corresponding component in b and there exists
at least one component in a that is strictly less than the
corresponding component in b. Formally, it is defined as:

Definition 1 (Dominance [10]): Given two vectors a and
b of length M , a dominates b, notationally a � b, if and only
if a(m) ≤ b(m), ∀m ∈ {1, 2, . . . ,M} and a(m) < b(m),
∃m ∈ {1, 2, . . . ,M} .
If a does not dominate b, this non-dominance is denoted
as a � b. Any two solutions are non-dominated if the
corresponding cost vectors do not dominate each other. The
set of all non-dominated conflict-free solutions is called the
Pareto-optimal set. In this work, we aim to find any maximal
subset of the Pareto-optimal set, where any two solutions in
this subset do not have the same cost vector.

III. A BRIEF REVIEW OF CONFLICT-BASED SEARCH

A. Conflicts and Constraints

Let (i, j, vi, vj , t) denote a conflict between agent i, j ∈ I ,
with vi, vj ∈ V representing the vertex of agent i, j at time
t. In addition, to represent a vertex conflict, vi is required to
be the same as vj and they both represent the location where
vertex conflict happens. To represent an edge conflict, vi, vj

denote the adjacent vertices that agent i, j swap at time t
and t + 1. Given a pair of individual paths πi, πj of agent
i, j ∈ I , to detect a conflict, let Ψ(πi, πj) represent a conflict
checking function that returns either an empty set if there is
no conflict, or the first conflict detected along πi, πj .

A conflict (i, j, vi, vj , t) can be avoided by adding a
corresponding constraint to the path of either agent i or
agent j. Specifically, let ωi = (i, uia, u

i
b, t), u

i
a, u

i
b ∈ V

denote a constraint generated from conflict (i, j, vi, vj , t) that
belongs to agent i with uia = vi, uib = vj and the following
specifications.
• If uia = uib, ωi forbids agent i from entering uia at time
t and is named as a vertex constraint as it corresponds
to a vertex conflict.
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• If uia 6= uib, ωi forbids agent i from moving from uia to
uib between time t and t + 1 and is named as an edge
constraint as it corresponds to an edge conflict.

Given a set of constraints Ω, let Ωi ⊆ Ω represent the
subset of all constraints in Ω that belong to agent i (i.e.,
Ω =

⋃
i∈I Ωi). A path πi is consistent with respect to

Ω if πi satisfies every constraint in Ωi. A joint path π is
consistent with respect to Ω if every individual path πi ∈ π
is consistent.

B. Two Level Search

CBS is a two level search algorithm. The low level search
in CBS is a single-agent optimal path planner that plans an
optimal and consistent path for an agent i with respect to a
set of constraints Ωi. If there is no consistent path for agent
i given Ωi, low level search reports failure.

For the high level search, CBS constructs a search tree T
with each tree node P containing:
• π = (π1, π2, . . . , πN ), a joint path that connect start

and goal vertices of agents respectively,
• g, a scalar cost value associated with π and
• a set of constraints Ω.

The root node Po of T has an empty set of constraints Ωo =
∅ and the corresponding joint path πo is constructed by the
low level search for every agent respectively with Ωo = ∅.

To process a high level search node Pk = (πk, gk,Ωk),
where subscript k identifies a specific node, conflict checking
Ψ(πi

k, π
j
k) is computed for any pair of individual paths in

πk with i, j ∈ I, i 6= j. If there is no conflict detected,
a solution is found and the algorithm terminates. If there
is a conflict (i, j, vi, vj , t) detected, to resolve the detected
conflict, CBS conducts the following procedures. First, CBS
splits the detected conflict to generate two constraints ωi =
(i, uia = vi, uib = vj , t) and ωj = (j, uja = vj , ujb = vi, t).
Secondly, CBS generates two corresponding nodes Pli =
(πli , gli ,Ωli), Plj = (πlj , glj ,Ωlj ), where Ωli = Ωk ∪ {wi}
and Ωlj = Ωk ∪ {wj}. Finally, CBS updates individual path
πi in joint path πli (and πj in πlj ) by calling the low level
search for agent i (and j) with a set of constraints Ωli (and
Ωlj respectively). If low level search fails to find a consistent
path for i (or j), node Pli (or Plj ) is discarded.

After conflict resolving, CBS inserts generated nodes into
OPEN, which is a priority queue containing all candidate
high level nodes. CBS optimally solves a (single-objective)
MAPF problem by iteratively selecting candidate node from
OPEN with the smallest g cost, detect conflicts, and then
either claims success (if not conflict detected) or resolves
the detected conflict which generates new candidate nodes.

Intuitively, from the perspective of the search tree T
constructed by CBS, OPEN contains all leaf nodes in T .
In each round of the high-level search, a leaf node Pk is
selected and checked for conflict. CBS either claims success
if paths in Pk are conflict-free or generates new leaf nodes.

IV. MULTI-OBJECTIVE CONFLICT-BASED SEARCH

Multi-objective conflict-based search (MO-CBS), as de-
scribed in Alg. 1, follows a similar workflow as CBS. MO-

CBS generalizes CBS to handle multiple objectives with the
following several key differences.

Algorithm 1 Pseudocode for MO-CBS, MO-CBS-t

1: Initialization()
2: S ← ∅
3: while OPEN not empty do
4: Pk = (πk, ~gk,Ωk)← OPEN.pop()
5: // Pk = (πk, ~gk,Ωk)← OPEN.pop-tree-by-tree()
6: if no conflict detected in πk then
7: FilterSolution(Pk)
8: add Pk to S
9: FilterOpen(Pk)

10: continue
11: Ω← Split detected conflict
12: for all ωi ∈ Ω do
13: Ωl = Ωk ∪ {ωi}
14: Πi

∗ ← LowLevelSearch(i, Ωl)
15: for all πi

∗ ∈ Πi
∗ do

16: πl ← πk
17: Replace πi

l (in πl) with πi
∗

18: gl ← compute path cost πl
19: if NonDom(gl) then
20: Pl = (πl, ~gl,Ωl)
21: add Pl to OPEN
22: return S

A. Initialization

In MO-CBS, to initialize OPEN (line 1 in Alg. 1), a single-
agent multi-objective planner (e.g. NAMOA* [10]) is used
for each agent i ∈ I separately to compute all cost-unique
Pareto-optimal paths, Πi

o, for agent i. A set of joint paths
Πo is generated by taking the combination of Πi

o,∀i ∈ I ,
i.e. Πo = {πo|πo = (π1

o , π
2
o , . . . , π

N
o ), πi

o ∈ Πi
o,∀i ∈ I}.

Clearly, the size of Πo is |Πo| = |Π1
o|×|Π2

o|×· · ·×|ΠN
o |. For

each πo ∈ Πo, a high level node containing πo, a cost vector
associated with πo and an empty constraint set is generated
and added into OPEN.Intuitively, while the original CBS
initializes a single root node and a single search tree T ,
MO-CBS initializes a number of R = |Πo| root nodes and
a “search forest” Tr, r = {1, 2, . . . , R} where each tree Tr
corresponds to a root node.

B. Finding a Solution

For every iteration in MO-CBS, a high level node Pk =
(πk, ~gk,Ωk) with a non-dominated cost vector ~gk in OPEN
is popped and processed. If πk is conflict-free, a solution
node is identified, and Pk is inserted into S, a set of high
level nodes where each node contains conflict-free paths for
the agents. Besides, two additional procedures need to be
conducted when finding a solution.

Procedure FilterSolution(Pk) uses the cost vector in Pk

to filter all previously found solution node in S. For every
node Pl = (πl, ~gl,Ωl) ∈ S, ~gl is compared with ~gk in Pk

and if ~gk � ~gl (or ~gk = ~gl), then Pl is removed from S. The
necessity of this procedure is rooted at the difference that
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Fig. 2: An illustration of the search process of MO-CBS.

a search forest Tr, r = {1, 2, . . . , R}, rather than a single
search tree, is constructed by MO-CBS. While each node
Pl in S is guaranteed to be non-dominated with respect to
the search tree that contains it (see Sec. V for a proof), Pl

is not guaranteed to be non-dominated with respect to other
search trees. When a solution node Pk is found in a tree Tk,
FilterSolution(Pk) removes solution nodes with dominated
cost vectors that are found in other trees Tl, l 6= k. As a
result, S is guaranteed to be a set, where each node contains
a Pareto-optimal solution when the algorithm terminates.

In addition, to filter nodes with dominated cost vectors in
OPEN, procedure FilterOpen is called when a solution node
is found. As Pk = (πk, ~gk,Ωk) contains a conflict-free joint
path, any candidates node Pl = (πl, ~gl,Ωl) in OPEN with
a dominated cost vector ~gl (i.e. ~gk � ~gl) can not lead to a
Pareto-optimal solution and is thus removed from OPEN.

While CBS terminates when the first solution is identified,
MO-CBS continues to search when a solution is identified
and terminates only when OPEN is empty in order to identify
all cost-unique Pareto-optimal solutions.

C. Conflict Resolution

When a node Pk = (πk, ~gk,Ωk) is popped from OPEN, if
πk contains a conflict, just as in CBS, the detected conflict is
split into two constraints and a new set of constraints Ωl is
generated correspondingly. Given an agent i and a constraint
set Ωl, the low level search (which is explained next) is called
to compute consistent paths with respect to Ωl for agent i.

Given Ωl and an agent i, while in CBS, only one individual
optimal path for agent i (that is consistent with Ωl) is
computed, in MO-CBS, there can be multiple consistent
Pareto-optimal individual paths for agent i. To find all of
them, the low level search uses NAMOA* [10] to search over
a time-augmented graph Gt = (V t, Et) = G×{0, 1, . . . , T},
where each vertex in v ∈ V t is defined as v = (u, t), u ∈
V, t ∈ {0, 1, . . . , T} and T is a pre-defined time horizon
(a large positive integer). Edges within Gt is represented

as Et = V t × V t where (u1, t1), (u2, t2) is connected in
Gt if (u1, u2) ∈ E and t2 = t1 + 1. Wait in place is also
allowed in Gt, i.e. (u, t1), (u, t1 + 1), u ∈ V is connected in
Gt. In addition, all vertices and edges in Gt that correspond
to vertex constraints and edge constraints in Ωi

l ⊆ Ωl are
removed from Gt.

This NAMOA*-based low level search guarantees to re-
turn a set of consistent, Pareto-optimal individual paths Πi

∗
for agent i subject to the given constraint set. For each path
πi
∗ ∈ Πi

∗ computed by the low level search, a corresponding
joint path πl is generated by first copy from πk and then
update the individual path πi

l in πl with πi
∗ (line 16-17 in Alg.

1). If the cost vector of πl is neither dominated nor equalized
by any solutions found so far, a new node Pl = (πl, ~gl,Ωl)
is generated and inserted into OPEN.

D. Tree-by-tree Expansion

In MO-CBS, a node with a non-dominated cost vector is
selected from OPEN and expanded (conflict checking and
splitting). This expansion strategy has two drawbacks. First
of all, all root nodes need to be generated so that a non-
dominated one can be selected. Considering an example with
ten agents and each agent has ten individual non-dominated
paths, in this case, MO-CBS needs to generate 1010 root
nodes, which is computationally prohibitive. Another draw-
back is that nodes are selected in a “breadth-first” manner in
the sense that selected nodes can belong to different trees. As
the number of agents (or objectives) increases, this expansion
strategy may lead to a large number of nodes expanded
before finding the first solution.

Here we propose a new expansion strategy. Let candi-
dates in OPEN be sorted by the tree Tr they belong to,
and let OPENr denote the open list that contains only
candidate in tree Tr, r ∈ {1, 2, . . . , R}. Clearly, OPEN=⋃

r∈1,2,...,ROPENr. Instead of selecting an arbitrary non-
dominated node in OPEN as MO-CBS does, initially, only
nodes in OPEN1 are selected for expansion. The selected
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node is then expanded in the same manner as MO-CBS.
As any newly generated nodes belong to T1, those nodes
must be inserted into OPEN1. Only when OPEN1 depletes,
the algorithm then selects candidates from OPEN2 (and then
OPEN3, and so on) for expansion. The algorithm terminates
when OPENR is depleted. We denote MO-CBS with such a
“tree-by-tree” node selection strategy as MO-CBS-t, where
“-t” stands for tree-by-tree.

MO-CBS-t enables on-demand generation of roots and
performs a “depth-first” like search by exhaustively exam-
ining one tree after another, which makes MO-CBS-t find
the first feasible solution potentially earlier than MO-CBS.
Note that those computed feasible solutions are only non-
dominated within the tree it belongs to and is not guaranteed
to be non-dominated among all trees. S is guaranteed to be
Pareto-optimal only when the algorithm terminates. How-
ever, numerical results in Sec. VI show that the cost vector
of the first solution found by MO-CBS-t is very “close” to
be Pareto-optimal.

E. Relationship to CBS

With only one objective, i.e. M = 1, MO-CBS is equiva-
lent to CBS in the following sense. Dominance between vec-
tors becomes the “less than” comparison between scalars and
the candidate with the minimum g cost in OPEN is popped
in each iteration. When the first solution with the minimum
g cost is found, all other nodes in OPEN are filtered by
the FilterSolution procedure and MO-CBS terminates. The
low level search returns one optimal solution at any time
of the search. Only one root is generated and there is one
corresponding search tree built during the search.

V. ANALYSIS

Let Tr, r ∈ {1, 2, . . . , R} represent a set of search trees
where Tr corresponds to the r-th root node created in the
initialization step. Let T (Pk) denote the search tree that node
Pk belongs to.

Definition 2 (CV set): Given a high level node Pk =
(πk, ~gk,Ωk), let CV (Pk) be a set of high level nodes in
T (Pk) where each node Pl = (πl, ~gl,Ωl) ∈ CV (Pk)
satisfies the following requirements: πl is consistent with
Ωk, and πl is conflict-free (i.e. valid).

In addition, if Pl = (πl, ~gl,Ωl) ∈ CV (Pk), we say Pk

permits πl.
Lemma 1: Given a node Pk = (πk, ~gk,Ωk), none of the

nodes in CV (Pk) has a cost vector that dominates ~gk, i.e.
~gl � ~gk,∀Pl = (πl, ~gl,Ωl) ∈ CV (Pk).

Proof: Every individual path in πi
k ∈ πk,∀i ∈ I is

computed by the low level planner, which guarantees πi
k is a

non-dominated individual path that is consistent with Ωi
k ⊆

Ωk, the subset of constraints that belongs to agent i. Since
Ωk =

⋃
i∈I Ωi

k, πk is a non-dominated joint path among all
joint paths consistent with Ωk. Assume that there exists a
node Pl = (πl, ~gl,Ωl) ∈ CV (Pk) with ~gl � ~gk. Since for
any node Pl = (πl, ~gl,Ωl) ∈ CV (Pk), we have Ωk ⊆ Ωl.
Thus, every individual path πi

l ∈ πl is also a consistent path

for Ωi
k,∀i ∈ I . This implies that πl is also consistent with

Ωk with gl dominating gk which contradicts.
Lemma 2: Let Π∗ denote the set of cost-unique Pareto-

optimal joint paths for a MOMAPF problem. For each π∗ ∈
Π∗, there is always a candidate node in OPEN that permits
π∗.

Proof: This lemma can be shown by induction. Initially,
every root node contains an empty set of constraints and
permits all conflict-free Pareto-optimal paths. Assume this
lemma holds for the k-th iteration and let Pk be a node in
OPEN that permits some π∗ ∈ Π∗. Then in the (k + 1)-th
iteration, Pk is expanded and two new nodes Pli , Plj are
generated. π∗ must be contained in a node that belongs to
either CV (Pli) or CV (Plj ) because any conflict-free joint
path must satisfy either of the constraints. Therefore, for (k+
1)-th iteration, either Pli or Plj permits π∗.

Theorem 1: MO-CBS finds all π∗ ∈ Π∗.
Proof: From Lemma 1, every identified solution Pk =

(πk, ~gk,Ωk) must be Pareto-optimal within T (Pk) since
none of the nodes in CV (Pk) can have a cost vector that
dominates ~gk. With FilterSolution procedure, S is guaranteed
to contain only Pareto-optimal solutions over all search trees
Tr, r = 1, 2, . . . , R. From Lemma 2, nodes in OPEN permits
all π∗ ∈ Π∗ and MO-CBS terminates when OPEN depletes.
Therefore, MO-CBS finds all π∗ ∈ Π∗ at termination.

Algorithm MO-CBS-t, as a variant of MO-CBS, is also
able to find all cost-unique Pareto-optimal solutions and the
above proof also applies to MO-CBS-t.

VI. NUMERICAL RESULTS

A. Test Settings and Implementation

We implemented MO-CBS, MO-CBS-t and
NAMOA* [10] in Python. NAMOA* serves as a
baseline approach, which is applied to the the joint
graph corresponding to agents to search for all cost-unique
Pareto-optimal solutions. All algorithms are compared on a
computer with an Intel Core i7 CPU and 16GB RAM. We
selected four maps (grids) from different categories in [18]
and generated an un-directed graph G by making each grid
four-connected. To assign cost vectors to edges in G, we
first assigned every agent a cost vector ai,∀i ∈ I of length
M (the number of objectives) and assigned every edge e in
G a scaling vector b(e) of length M , where each element
in both ai and b(e) were randomly sampled from integers
in [1, 10]. The range [1, 10] follows the convention used
in [9]. The cost vector for agent i to go through e is the
component-wise product of ai and b(e). If agent i wait in
place, the cost incurred is ai. We tested the algorithms with
different number of objectives M and different number of
agents N within a run time limit of five minutes.

In the implementation of MO-CBS and MO-CBS-t, for
the low level search, the heuristic vector for a node is
implemented as a unit vector scaled by the Manhattan
distance to the destination, which is same to the heuristics
used in [9]. For the high level search, all nodes with non-
dominated cost vectors in OPEN are lexicographically sorted
and the minimum one is popped from OPEN.
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B. MO-CBS vs NAMOA* with Different M

Fig. 3: Comparison of NAMOA* and MO-CBS with N = 2
against different metrics as functions of M .

We first limited our focus to the grid “empty-16-16” in
[18], which is a 16 by 16 grids without obstacles. Fig. 3
and Fig. 4 shows the results with N = 2 and N = 4 (fixed
N ) respectively, against the metrics of (1) success rates of
finding all cost-unique Pareto-optimal solutions, (2) average
number of solutions found, (3) average number of states
(NAMOA*) or high-level nodes (for MO-CBS) expanded
and (4) average run time, over all test instances. All the
averages are taken over instances where all cost-unique
Pareto-optimal solutions are found and these instances are
called solved instances in the subsequent sections. From
Fig. 3, we find that NAMOA* has a higher success rates
M = 2, 3, 4. However, from Fig. 4, with four agents (N =
4), MO-CBS achieves higher success rates and shorter run
time than NAMOA* with all M = 1, 2, 3, 4.

In addition, from both figures, the number of solutions
increases as M increases, which indicates the difficulty of
MOMAPF. Note that, when M = 1, the MOMAPF problem
with a single objective is the same as the conventional MAPF
problem and MO-CBS is equivalent to CBS.

Fig. 4: Comparison of NAMOA* and MO-CBS with N = 4
against different metrics as functions of M .

C. MO-CBS with Different N

Fig. 5 reports the performance of MO-CBS and MO-CBS-t
in terms of (1) success rates of finding all cost-unique Pareto-
optimal solutions, (2) success rates of finding at least one
feasible solution, (3) average numbers of high-level nodes
expanded and (4) average run times, in three different types
of grids, with a fixed M = 2 and varying N . All the averages
are taken over solved instances. MO-CBS-t outperforms MO-
CBS in terms of identifying the first solution due to its
tree-by-tree search strategy. In grid such as den312d of size
65x81, the number of individual Pareto-optimal solutions for
each agent can exceed a hundred. As a result, the number
of roots to be searched can grow tremendously when N
increases. In this case, MO-CBS cannot finish initialization
as generating all those roots is computationally burdensome,
while MO-CBS-t can start the search without generating all
roots and return a feasible solution as soon as possible.

In addition, from all the plots in Fig. 5, both MO-CBS and
MO-CBS-t do not scale well with an increasing N , which is
an interesting topic for our future work.

D. Sub-optimality of the First Solution Found by MO-CBS-t

To estimate the sub-optimality of the first solution found
by MO-CBS-t before termination, we recorded the corre-
sponding cost vector x. For the instances where MO-CBS-t
successfully finds all cost-unique Pareto-optimal solutions,
let X∗ denote the set of Pareto-optimal cost vectors. We first
computed d(x,X∗) = infx∗∈X∗ ||x−x∗||2 [14], the distance
of x to X∗ in Euclidean norm. We then computed a measure
of sub-optimality in percentage by dividing d(x,X∗) with
the averaged Euclidean norm of all vectors in X∗. The
results show that for all three grids shown in Fig. 5, this
percentage is on average less than 1%, maximally less than
3% and minimally zero. It indicates, empirically, the first
solution found by MO-CBS-t is exactly Pareto-optimal or
very “close” to be Pareto-optimal.

VII. CONCLUSION

New algorithms, MO-CBS and its variant MO-CBS-t,
were presented for a multi-objective multi-agent path finding
problem. We showed that the algorithm is able to find
the entire Pareto-optimal set. Numerical results showed the
proposed approach outperforms the baseline against different
metrics. There are several directions for future work. One
can focus on approximating the Pareto-optimal sets for better
scability. One can also develop other types of multi-objective
MAPF algorithms such as the ones based on the subdi-
mensional expansion framework [23]. We have preliminary
results in this research direction as shown in [12].
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