
Subdimensional Expansion for Multi-objective Multi-agent Path Finding

Zhongqiang Ren1, Sivakumar Rathinam2 and Howie Choset1

Abstract— Conventional multi-agent path planners typically
determine a path that optimizes a single objective, such as
path length. Many applications, however, may require multiple
objectives, say time-to-completion and fuel use, to be simulta-
neously optimized in the planning process. Often, these criteria
may not be directly compared and sometimes lie in competition
with each other. Simply applying standard multi-objective
search algorithms to multi-agent path finding may prove to be
inefficient because the size of the space of possible solutions, i.e.,
the Pareto-optimal set, can grow exponentially with the number
of agents. This paper presents an approach that bypasses this
so-called curse of dimensionality by leveraging our prior multi-
agent work with a framework called subdimensional expansion.
One example of subdimensional expansion, when applied to
A∗, is called M∗ and M∗ was limited to a single objective
function. We combine principles of dominance and subdimen-
sional expansion to create a new algorithm, named multi-
objective M∗ (MOM∗), which dynamically couples agents for
planning only when those agents have to “interact” with each
other. MOM∗ computes the complete Pareto-optimal set for
multiple agents efficiently and naturally trades off sub-optimal
approximations of the Pareto-optimal set and computational
efficiency. Our approach is able to find the complete Pareto-
optimal set for problem instances with hundreds of solutions
which the standard multi-objective A∗ algorithms could not
find within a bounded time.

I. INTRODUCTION

Multi-agent path finding (MAPF), as its name suggests,
determines an ensemble of paths for multiple agents between
their respective start and goal locations. Variants of MAPFs
have received significant attention in the robotics community
over the last decade [22]. In a standard MAPF problem, each
ensemble of paths is associated with a single objective such
as the agent’s total travel time or travel risk. However, in
many real-world applications [32], [7], [20], each ensemble
of paths is associated with multiple and sometimes conflict-
ing objectives such as path length, travel risk, arrival time
and other domain-specific measures. This article presents
a natural generalization of the MAPF to include multiple
objectives for multiple agents. We call this problem multi-
objective multi-agent path finding (MOMAPF).

In the presence of multiple objectives, in general, there
may not be a single optimal solution that optimizes all
the objectives. Therefore, we seek a set of Pareto-optimal
solutions for multi-objective problems [3]. A solution is
Pareto-optimal if there exists no other solution that will
yield an improvement in one objective without causing a
deterioration in at least one of the other objectives. Finding a

1 Zhongqiang Ren and Howie Choset are with Carnegie Mellon Univer-
sity, 5000 Forbes Ave., Pittsburgh, PA 15213, USA.

2Sivakumar Rathinam is with Texas A&M University, College Station,
TX 77843-3123.

Fig. 1. A conceptual illustration of MOM∗. Agents initially plan their
paths independently and are coupled together only when needed. The entire
search process optimizes multiple objectives and yields all Pareto-optimal
solutions.

Pareto-optimal set for MOMAPF while ensuring conflict-free
paths for agents in each solution is quite challenging [17],
[33] as the size of the Pareto-optimal set may grow ex-
ponentially with respect to the number of agents as well
as the dimension of the search space. Even though there
are multi-objective single-agent search algorithms, such as
NAMOA∗ [12] and others [23], [16], simply applying them
to the joint configuration space of all agents may be ineffi-
cient. In this article, we present a new approach called multi-
objective M∗ (MOM∗) that is complete and aims to find
the set of all Pareto-optimal solutions for MOMAPF. This
work leverages our subdimensional expansion framework
for single-objective MAPF [27], and existing multi-objective
dominance techniques [3].

Specifically, MOM∗ (Fig. 1) begins by letting agents
follow their individual “optimal” policies subject to multiple
objectives. When an agent-agent conflict is found, MOM∗

couples those agents together in the same manner as M* [27],
which locally increases the dimensionality of the search
space and enables MOM∗ to plan a path in the joint space to
resolve conflicts. To compare two paths subject to multiple
objectives, MOM∗ leverages the dominance rules [3]. As a
result, MOM∗ plans in a relatively compact space to find
all Pareto-optimal solutions and saves computational effort
with respect to the existing graph search approaches such as
NAMOA∗ [12], which plans in the joint space of agents.
Additionally, with inflated heuristics [13], MOM∗ can be
modified to a bounded sub-optimal algorithm that trades off
between computational efficiency and approximation quality.

To evaluate MOM∗, we ran tests in various grid-like
maps from [22]. As a baseline, we apply NAMOA∗, a



well-known graph search algorithm that computes the exact
Pareto-optimal set to the joint graph of all agents to solve
MOMAPF. We also compared MOM∗ with another work
from us, namely the multi-objective conflict-based search
(MO-CBS) [14], which extends conflict-based search to
compute the exact Pareto-optimal set for MOMAPF. We
compared all three algorithms under multiple metrics, as
functions of both number of agents (as conventional MAPF
research does) as well as number of objectives. Our results
show that MOM∗ outperforms NAMOA∗ in terms of (1)
success rates of finding all Pareto-optimal solutions, (2)
number of state expanded and (3) run time over various
test instances. Comparing with MO-CBS, MOM∗ achieves
better success rates and shorter run time in some maps. There
is no leading algorithm over all instances for MOMAPF,
which is similar to the observation in the single-objective
MAPF [4]. In addition, we also corroborated the inflated
MOM∗, an algorithm which finds sub-optimal solutions, with
different heuristic inflation rates under various grids with
up to twenty agents. Inflated MOM∗ demonstrates obviously
better scalability than both MOM∗ and MO-CBS.

The rest of the article is organized as follows. Sec. II
reviews the related work and Sec. III defines the MOMAPF
problem. MOM∗ algorithm is described in Sec. IV and
its properties are proved in Sec. V. Numerical results are
presented in Sec. VI with conclusions in Sec. VII.

II. RELATED WORK

A. Multi-agent Path Finding

MAPF methods tend to fall on a spectrum from centralized
to decentralized, trading off completeness and optimality
for scalability. On the decentralized side of the spectrum,
prioritized approaches [19], [11] achieve scalability by de-
composing the joint configuration space into a sequence of
individual configuration spaces and plan for agents one after
another in a pre-defined sequence, which is not guaranteed
to be complete. In the middle of the spectrum, rule-based
approaches [10], [30], seek to overcome the curse of dimen-
sionality by resolving agent-agent conflicts with pre-defined
primitives. While the approaches compute scalable solutions,
they lack completeness and optimality. Unfortunately, these
approaches are not complete and often form paths with un-
desired features. Reduction-based methods transform MAPF
to known problems like network flow [33], SAT [24], etc,
and rely on the corresponding solvers. Conflict-based search
(CBS) [18] is a two level search algorithm that finds optimal
paths for agents and has been improved in many ways [1],
[8]. Finally, on the centralized side of the spectrum, A∗-based
approaches [21], [5] leverages A∗-like search and plan in the
joint configuration space of all the agents.

Subdimensional expansion [27], as another method stands
in the middle of the spectrum, bypasses the curse of di-
mensionality by dynamically modifying the dimension of the
search space based on agent-agent conflicts. This approach
applies to many algorithms [29], [28], and inherits complete-
ness and optimality, if the underlying algorithm already has
these features. Combining subdimensional expansion with

A∗ results in M∗ [27]. M∗ begins by computing a set of
individual policies for agents and lets every agent follow
its policy towards its goal, initially ignoring agent-agent
conflicts. When a conflict is detected, the subset of agents
in conflict are locally coupled together to form a new search
space with increased dimensions, where a new search is
conducted to resolve the conflict. In this work, we combines
subdimensional expansion with multi-objective search.

B. Multi-objective Search

Multi-objective optimization (MOO) has been applied to
single-agent path planning [23], [12], [26], motion plan-
ning [25], reinforcement learning [15], etc. With respect
to MOO for multiple agents, the only known work (we
are aware of) is on evolutionary algorithms [31] for a
related variant of MOMAPF. Specifically, in [31], the authors
consider a variant of MOMAPF where conflicts between the
agent’s paths is modeled in one of the objectives and not
as a constraint; as a result, a solution in the Pareto-optimal
set may have agent’s paths that conflict with each other. In
addition, the work in [31] assumes no wait times for agents
at any vertex in the graph which greatly reduces the size of
the Pareto-optimal set. In this work, we allow for agents to
wait at any vertex in the graph and seek conflict-free paths
for agents in any feasible solution as in the standard MAPF.

Our approach is closely related to conventional multi-
objective (graph) search problems [9], which requires finding
all Pareto-optimal paths connecting start and goal vertices
within a given graph subject to multi-objectives. One of
the basic challenges in multi-objective search is to com-
pute the exact Pareto-optimal set, the size of which can
grow exponentially with respect to the number of nodes
in a graph [17]. To overcome the challenge, algorithms
like A∗ [6], as a best-first search method, are extended to
multi-objective A∗ (MOA∗) [23] and later improved by A
New Approach to MOA∗ (NAMOA∗) [12]. Even though
MOA∗-type algorithms can be applied to the product of the
configuration spaces of the agents, numerical results in Sec.
VI show that it is significantly less efficient compared to
the proposed MOM∗, which is an algorithm that benefits
from the techniques in both MAPF communities and multi-
objective search communities.

In parallel with this work, we are also working on multi-
objective conflict-based search (MO-CBS) [14], which ex-
tends the popular conflict-based search algorithm to compute
the exact Pareto-optimal set for MOMAPF. Our results show
that there is no leading algorithm in all maps. Additionally,
the approximation algorithm proposed in this work, inflated
MOM∗, achieves better scalability than both MOM∗ and
MO-CBS while providing approximated Pareto-optimal set
with bound guarantees.

III. PROBLEM DEFINITION

Let index set I = {1, 2, . . . , N} denote a set of N
agents. All agents move in a workspace represented as a
graph G = (V,E), where the vertex set V represents all
possible locations of agents and the edge set E = V × V



denotes the set of all possible actions that move an agent
between any two vertices in V . An edge between two vertices
u, v ∈ V is denoted as (u, v) ∈ E and the cost of an edge
e ∈ E is an M -dimensional strictly positive real vector:
cost(e) ∈ (R+)M\{0}, with M being a positive integer.1

In this work, we use a superscript i ∈ I over a variable to
represent the specific agent to which the variable belongs.
For example, vi ∈ V means a vertex with respect to
agent i. Let πi(vi1, v

i
`) be a path that connects vertices vi1

and vi` via a sequence of vertices (vi1, v
i
2, . . . , v

i
`) in G.

Let gi(πi(vi1, v
i
`)) denote the M -dimensional cost vector

associated with the path, which is the sum of the cost vectors
of all the edges present in the path, i.e. gi(πi(vi1, v

i
`)) =

Σj=1,2,...,`−1cost(vij , v
i
j+1).

All agents share a global clock. Each action, either wait
or move, for any agent requires one unit of time. All the
agents start their paths at time t = 0. Any two agents
i, j ∈ I are said to be in conflict if one of the following two
cases happens. The first case is a “vertex conflict” where
two agents occupy the same vertex at the same time. The
second case is an “edge conflict” (also called swap conflict)
where two agents move through the same edge from opposite
directions between times t and t+ 1 for some t.

Let vio, v
i
f ∈ V respectively denote the initial location and

the final destination of agent i. Without loss of generality, to
simplify the notations, we also refer to a path πi(vio, v

i
f ) for

agent i between its initial and final locations as simply πi.
Let π = (π1, π2, . . . , πN ) represent a joint path for all the
agents. The cost vector of this joint path is defined as the
vector sum of the individual path costs over all the agents,
i.e., g(π) = Σig

i(πi). To compare any two joint paths, we
compare the cost vectors corresponding to them. Given two
vectors a and b, a dominates b if every component in a is
no larger than the corresponding component in b and there
exists at least one component in a that is strictly less than
the corresponding component in b. Formally, it is defined as
follows:

Definition 1 (Dominance [12]): Given two M -
dimensional vectors a and b, a dominates b, symbolically
a � b, if ∀m ∈ {1, 2, . . . ,M}, a(m) ≤ b(m), and there
exists m ∈ {1, 2, . . . ,M} such that a(m) < b(m).
If a does not dominate b, we represent this non-dominance
as a � b. Any two solution joint paths are non-dominated if
the corresponding cost vectors do not dominate each other.
The set of all non-dominated solutions is called the Pareto-
optimal set. MOMAPF problem aims to find an maximal
subset of the Pareto-optimal set, where any two solutions in
this subset do not have the same cost vector.

IV. MULTI-OBJECTIVE M*
A. Notation

Let G = (V, E) = G×G× · · · ×G︸ ︷︷ ︸
N times

denote the joint

graph which is the Cartesian product of N copies of graph

1Wait-in-place action of an agent can be treated as a self-loop in a graph,
which is an edge that connects a vertex to itself. In this work, the cost vector
of a self-loop is also required to be strictly positive.

G, where each vertex v ∈ V represents a joint vertex
and e ∈ E represents a joint edge that connects a pair
of joint vertices. The joint vertex corresponding to the
initial locations of the agents is vo = (v1o , v

2
o , · · · , vNo ).

In addition, let π(u, v), u, v ∈ V represent a joint path,
which is a tuple of N individual paths, i.e., π(u, v) =
(π1(u1, v1), · · · , πN (uN , vN )).

The state of the agents is denoted as s = (v, g), which
represents a partial solution: v represents the joint vertex
occupied by the agents and g denotes the cost vector of a
joint path connecting vo and v. For the rest of the work, let
v(s) denote the joint vertex in state s and g(s) denote the
cost vector. Similarly, let vi(s) denote the individual vertex
in v(s) corresponding to agent i ∈ I . Besides, we say a state
sk visits joint vertex vl if v(sk) = vl.

Similar to the A∗ algorithm, a heuristic (cost) vector
is associated with each joint vertex. The heuristic vector
of v ∈ V is denoted as h(v), which is the sum of the
(individual) heuristic vectors of every individual vertex vi ∈
v, i.e. h(v) = Σi∈Ih(vi) and h(vi) is an component-wise
underestimate of the cost vectors of all Pareto-optimal paths
from vi to vif . Also, the f -vector associated with a state s
is defined as f(s) := g(s) + w · h(v(s)), where w is the
heuristic inflation rate with value no less than one.

Let “collision set” IC(s) ⊆ I represent a set of agents
in conflict at state s. To detect conflicts, collision function
Ψ : V × V → 2I is introduced to check if there is any
vertex or edge conflicts given two adjacent joint vertices.
Collision function Ψ returns either an empty set if no conflict
is detected, or a set of agents that are in conflict.

As in the well-known A∗ algorithm [6], at any stage of
the algorithm, let OPEN be the open list which contains
candidate states to be expanded and let CLOSED represent
the set of states that have already been expanded. In addition,
states in the OPEN and CLOSED list are organized based
on their joint vertices: given a joint vertex v, let OPEN(v)
and CLOSED(v) denote the subset of open and closed states
that share the same v.

B. Algorithm Overview

The proposed MOM∗ algorithm avoids directly search
over the joint graph. Intuitively, MOM∗ gains computation
efficiency by (1) only considering the joint graph of a subset
of agents when the agents have to interact to avoid conflicts,
and (2) frequently pruning the partial solutions that are
dominated.

The pseudo code2 of MOM∗ is shown in Algorithm 1. For
initialization, the initial state so = (vo, 0), where 0 denotes
a zero vector, is added to OPEN. In each iteration of the
search loop (from line 4), a state sk with a non-dominated
f -vector is popped from OPEN. Next, the joint vertex v(sk)
is compared with the final joint vertex vf .
• If v(sk) = vf , a non-dominated solution can be ob-

tained (line 6) by iteratively back-tracking the parent of
each state from sk to so. In addition, the f -vector of

2For readers that are familiar with M∗ [27], we highlight the differences
between MOM∗ and M∗ in blue in the pseudo-code.



this non-dominated solution f(sk) is used to “filter”
all the candidate states in OPEN by calling a sub-
procedure (Sec. IV-D.5), which prunes any candidate
states with f -vectors dominated by f(sk) (note that
h(vk) = h(vf ) = 0 and f(sk) = g(sk)).

• If v(sk) 6= vf , state sk (from line 10) is expanded by
considering only a limited set of neighbor states Sngh of
sk (Sec. IV-D.3), which avoids searching over the joint
graph directly and reduces the branching factor during
the search. The Sngh of sk is controlled by the collision
set IC(sk). For each neighbor sl ∈ Sngh, collision
function Ψ(v(sk), v(sl)) is called and the resulting col-
lision set is back-propagated (Sec. IV-D.3). This back-
propagation updates the collision set of the ancestor
states if needed and inserts those ancestor states into
OPEN for re-expansion with a larger limited neighbor
set. Then, state sl is compared with any other state s′

that visits v(sl) (i.e. v(s′) = v(sl)). If cost vector g(sl)
is dominated by or equal to g(s′), sl is pruned and a
sub-procedure is called to handle collision set back-
propagation when dominance happens (Sec. IV-D.4).
Otherwise, sl is inserted into OPEN as a candidate state
for future expansion.

When OPEN becomes empty, there is no candidate state with
a non-dominated f -vector. The algorithm then terminates and
returns S, which is a set that contains all cost-unique non-
dominated solutions for MOMAPF.

Algorithm 1 Pseudocode for MOM∗

1: initialize OPEN and OPEN(vo) with so = (vo, 0)
2: S ← ∅ . A set of solutions
3: while OPEN not empty do . Main search loop
4: sk ← OPEN.pop()
5: move sk from OPEN(v(sk)) to CLOSED(v(sk))
6: if v(sk) = vf then
7: π ← Reconstruct(sk) . Reconstruct joint path
8: add π to S
9: FilterOpen(sk) . Use sk to filter open list

10: Sngh ← GetNeighbor(sk)
11: for all sl ∈ Sngh do
12: IC(sl)← IC(sl)

⋃
Ψ(v(sk), v(sl))

13: BackProp(sk, IC(sl))
14: f(sl)← g(sl) + w · h(vl)
15: if Ψ(v(sk), v(sl)) 6= ∅
16: continue
17: if Compare(sl) then
18: add sl to OPEN and OPEN(v(sl))
19: add sk to back set(sl)
20: parent(sl) ← sk
21: else . Back-propagation due to dominance
22: DomBackProp(sk, sl)
23: return S

C. Relationship to M∗

The MOMAPF problem, as defined in Sec. III generalizes
the conventional (single-objective) MAPF: when M = 1,
the MOMAPF problem becomes a conventional (single-
objective) MAPF problem and the solution set consists of
only one solution with the optimal cost value. Similarly, the

proposed MOM∗ algorithm can also be regarded as a gen-
eralization of M∗ to handle multiple objectives. Specifically,
when M = 1, MOM∗ solves (single-objective) MAPF in the
following sense.
• State comparison becomes “≤” (no larger than) rela-

tionship between two scalar cost values.
• In every search iteration, a state with a non-dominated

(i.e. minimum) cost value in OPEN is popped, which
guarantees that the first solution identified is the one
with the minimum cost value (denoted as C∗).

• All candidate states in OPEN have cost no less than
C∗ and are thus pruned in the sub-procedure that filters
OPEN with C∗, which leads to the termination of the
algorithm as OPEN becomes empty.

• Procedure DomBackProp and maintaining a set
OPEN(v)

⋃
CLOSED(v) at each joint vertex v ∈ V are

redundant when M = 1 since there is only one optimal
path from vo to any v ∈ V (up to tie).

D. Key Parts of Our Approach

1) State Space: MOM∗ defines its search state to be a
tuple (v, g) consisting of a joint vertex v and a cost vector
g, which identifies a partial solution from vo to v with cost
vector g. The reason for such a state definition is rooted at the
key difference between single-objective and multi-objective
search problems: while there is one optimal path from vo
to any v in single-objective settings, there are multiple non-
dominated paths π(vo, v) for any v ∈ V for multi-objectives.
This state definition allows the algorithm to differentiate
between paths π(vo, v) with different cost vectors.

2) Pareto Policy: In multi-objective settings, for every
agent i ∈ I , there exists multiple non-dominated paths from
vio to a vertex vi ∈ V and there are also multiple non-
dominated paths πi(vi, vif ). Therefore, the optimal policy
φi(vi) maps vi to multiple neighbor vertices, each of which
is along some non-dominated path πi(vi, vif ). This differs
from the concept of the optimal policy used in M∗, where
φi(vi) maps vi to only one neighbor along an optimal path
from vi to vif . To differentiate, we use term Pareto policy to
describe an individual policy φi in multi-objective settings
for the rest of the article. To compute φi,∀i ∈ I , MOM∗ runs
single-agent multi-objective search [12] backwards from vif
to all vertices in G.

3) Limited Neighbors: Limited neighbors is a concept
originally introduced in M∗ and generalized here (by com-
bining Pareto policies) for MOM∗. The limited neighbors
Sngh
k of sk is a set of neighbor states that can be reached

from sk. For each agent i, if i /∈ IC(sk), agent i is only
allowed to follow its Pareto policy φi(vik). If i ∈ IC(sk),
agent i is allowed to visit any neighbor of vik in G. Formally,

Sngh
k = {sl

∣∣∣∣
{
vi(sl) ∈ φi(vi(sk)) if i /∈ IC(sk)

vi(sl)|(vi(sk), vi(sl)) ∈ E if i ∈ IC(sk)
,

g(sl) = g(sk) + Σi∈I(cost(vi(sk), vi(sl))) }. (1)

Limited neighbors of a state s varies once IC(sk) changes,
which dynamically modifies the sub-graph embedded in joint



graph G that can be reached from sk. Collision set IC(sk)
is updated (enlarged) recursively when Algorithm 2 is called
(line 12 in Algorithm 1). To keep track of the states that
should be back-propagated to, a data structure “back set” is
defined at every search state. Intuitively, the back set at state
sk contains all parent states from which sk is ever reached.
When IC(sk) is enlarged, IC(sk) is back-propagated to every
state in back set(sk).

Algorithm 2 Pseudocode for BackProp
1: INPUT: sk, IC(sl)
2: if IC(sl) * IC(sk) then
3: IC(sk)← IC(sl)

⋃
IC(sk)

4: if sk /∈ OPEN then
5: add sk to OPEN and OPEN(v(sk))
6: remove sk from CLOSED(v(sk))
7: for all s′k ∈ back set(sk) do
8: BackProp(s′k, IC(sk))

When back-propagating a collision set IC(sl) to a state
sk ∈ back set(sl), if IC(sk) is not a super set of IC(sl), then
IC(sk) is updated by taking the union of IC(sl) (line 3). In
addition, sk is re-inserted into OPEN (and OPEN(v(sk)))
from CLOSE (and CLOSE(v(sk))), which makes MOM∗

expand sk again with a possibly larger limited neighbor set.
4) State Comparison: Given a joint vertex v ∈ V , let

α(v), v ∈ V denote the “frontier set at v”: a subset of
states that visits v with non-dominated cost vectors. In
MOM∗, set OPEN(v)

⋃
CLOSE(v) forms a super set of α(v).

When MOM∗ expands sk and generates state sl, to decide
whether sl should be pruned or not (line 17 in Algorithm
1), g(sl) is compared with the cost vector g(s′),∀s′ ∈
OPEN(v(sl))

⋃
CLOSE(v(sl)).

• If g(sl) is dominated by (or equal to) g(s′), sl can not
be part of α(v) and is thus pruned. In addition, MOM∗

back-propagates the collision set at s′ to sk and then
add sk to the back set(s′) before discarding sl. By doing
so, MOM∗ keeps updating collision sets of any ancestor
states of sl after sl is pruned.

• Otherwise, sl may represent a non-dominated partial
solution from vo to v and is therefore inserted into
OPEN and OPEN(v(sl)) and becomes part of set
OPEN(v(sl))

⋃
CLOSE(v(sl)) permanently.

Algorithm 3 Pseudocode for DomBackProp
1: INPUT: sk, sl . sl is generated from sk
2: for all s′ in OPEN(v(sl))

⋃
CLOSED(v(sl)) do

3: if g(s′) � g(sl) or g(s′) = g(sl) then
4: BackProp(sk, IC(s′))
5: add sk to back set(s′)

5) Termination Condition and Heuristic Inflation: Differ-
ent from M∗, which terminates when the first solution is
identified, MOM∗ terminates only when OPEN is empty,
to identify all Pareto-optimal solutions. For a MOMAPF
problem, however, OPEN is often prohibitively huge since
the joint vertex space grows exponentially with respect to
the number of agents. To avoid unnecessary state expansion,

multi-objective search algorithms often use the cost vector of
a state sk that visits vf to filter candidates states in OPEN and
prune those with dominated cost vectors. In this work, when
v(sk) = vf , we compare the f -vectors of both sk and the
candidate states in OPEN. States in OPEN with dominated f -
vectors are filtered. As the heuristic vector is an component-
wise underestimate of the cost-to-goal, when w = 1, MOM∗

algorithm does not prune any candidate states that are part
of a non-dominated solution.

The use of f -vectors in the filtering procedure allows
MOM∗ to utilize inflated heuristics to trade off between
search efficiency and bounded sub-optimality, as commonly
done in A∗ [13] or M∗-based algorithms [27]. For MOM∗,
when w > 1, it is guaranteed that for any Pareto-optimal
solution with cost vector g∗, inflated MOM∗ is able to
find a sub-optimal solution with cost vector g that’s in the
“proximity” of g∗ and such proximity is bounded by w.
Detailed proof is provided in Sec. V.

Algorithm 4 Pseudocode for FilterOpen
1: INPUT: sk . v(sk) = vf
2: for all sl in OPEN do
3: iff(sk) � f(sl) or f(sk) = f(sl) then
4: move sl from OPEN(v(sl)) to CLOSED(v(sl))
5: remove sl from OPEN

V. THEORETICAL PROPERTIES OF MOM*

Theorem 1 (Completeness and optimality): If there is no
solution, MOM∗ terminates in finite time and reports failure;
otherwise, MOM∗ finds all cost-unique Pareto-optimal joint
paths connecting vo and vf .

Proof: We provide a sketch proof to concisely highlight
the overall flow and key steps. Let Π∗ denote a set of all cost-
unique conflict-free Pareto-optimal joint paths connecting vo
and vf in G. Let Gsch represent the search graph: the sub-
graph of G that is reachable from vo by iteratively following
limited neighbors. By the construction of MOM∗ algorithm
(Alg. 1), during the search process, MOM∗ either grows Gsch
by modifying collision set at search states or conducts A∗-
like search in Gsch by selecting a candidate state with non-
dominated cost vector for expansion from OPEN.

We first claim that (claim 1) MOM∗ can identify all cost-
unique Pareto-optimal solutions within Gsch because MOM∗

expands a state by generating all possible neighbors of that
state in Gsch and terminates only when OPEN is empty.
Thus, if Gsch contains all π∗ ∈ Π∗, MOM∗ can find all of
them. Next, we claim that If there exists a π∗ ∈ Π∗ that is
not contained in Gsch, then there must exist a corresponding
joint path π′ such that (1) there is a conflict along π′

and (2) g(π∗) � g(π′). Here, condition (2) guarantees
that states along π′ will by expanded by MOM∗ before
termination and condition (1) guarantees that a conflict will
be identified during the state expansion, which grows Gsch
and eventually includes π∗ into Gsch. Therefore, combining
with the previous claim (claim 1), MOM∗ computes all cost-
unique Pareto-optimal solutions in Π∗.



If there is no feasible joint path from vo to vf in G, MOM∗

modifies Gsch for a finite number of times because G is finite
and there is only a finite number of partial solutions from vo
to any other joint vertices in G.3 This guarantees that MOM∗

terminates in finite time without returning a solution.
Theorem 2 (Bounded sub-optimality): When a heuristic is

inflated by a factor of w > 1, for any Pareto-optimal path
π∗ with non-dominated cost vector g∗, within S returned by
MOM∗, there exists a joint path π with cost vector g such
that g(m) < w · g∗(m),m = 1, 2, . . . ,M .

Proof: Let s be a state expanded by MOM∗ with v(s) =
vf and let s′ be a state that is filtered from OPEN when
compared with s in Algorithm 4. Let h∗(v(s′)) be the true
cost vector of an arbitrary Pareto-optimal path from v(s′) to
vf and let f∗(s′) = g(s′) + h∗(v(s′)).

As h(v(s′)) component-wise underestimates h∗(v(s′)),
w · f∗(s′) ≥ w(g(s′) + h(v(s′))). Since w > 1, w(g(s′) +
h(v(s′))) > f(s′) = g(s′) + wh(v(s′)). Since s′ is filtered
from OPEN when compared with s, f(s′) = g(s′) +
wh(v(s′)) > f(s) = g(s) + wh(v(s)). As v(s) = vf , it
means h(v(s)) = 0 and f(s) = g(s) + wh(v(s)) = g(s).
Put them together, we have wf∗(s′) > g(s). If the filtered
state s′ is part of a Pareto-optimal path (with Pareto-optimal
cost vector f∗(s′)), then MOM∗ finds a solution with cost
vector g(s) < wf∗(s′).

VI. NUMERICAL RESULTS

We implemented both MOM∗ and NAMOA∗ [12] in
Python. The NAMOA∗ is applied to the the joint graph G of
agents and serves as a baseline approach. As we are working
on extending conflict-based search [18] to multi-objective
conflict-based search (MO-CBS) [14], the preliminary results
of a Python implementation of MO-CBS is also reported
here for comparison. All algorithms are tested on a computer
with a CPU of Intel Core i7 and 16GB RAM. To test the
algorithms, we selected four maps (grids) from different
categories [22] and generate an un-directed graph G by
making each grid four-connected. To assign cost vectors to
edges, we first assign every agent a cost vector ai of length
M (the number of objectives) for all agents i, and assign
every edge e in graph G a scaling vector b(e) of length M ,
where each component in both ai and b(e) are randomly
sampled from integers in [1, 10]. The cost vector for agent i
to go through an edge e is the component-wise product of ai

and b(e). If agent i waits in place, the cost vector incurred is
ai. We tested the algorithms with different heuristic inflation
rates w, different number of objectives M and different
number of agents N . We limited the computation time of
each instance to five minutes.

A. Implementation of heuristics and Pareto policies

In our implementation, to compute heuristics h(v), v ∈ V ,
we first run single-agent NAMOA∗ search backwards from
vif to all other vertices in G for all agents i ∈ I , which

3There is no need to bound the time horizon for search since paths
with unnecessary waits are pruned by dominance when compared with the
corresponding paths without unnecessary waits.

computes the set of all Pareto-optimal cost vectors {gi∗} of
paths πi(vif , u) that connects vif with u ∈ V for all i ∈ I .
Then, for each (individual) vertex u in G, the component-
wise minimum over all vectors in {gi∗} forms a cost vector
hi(u) which underestimates the cost vectors of any path from
u to vif . Finally, the heuristic value of a joint vertex v ∈ V is
computed by h(v) = Σi∈Ih

i(vi), where vi is the individual
vertex contained in v for agent i. As this computation finds
the individual Pareto-optimal paths at each node for each
agent, the Pareto policy for each agent is also constructed.
The heuristics are computed before the search begins for both
NAMOA∗ and MOM∗, and the computation time is included
in the run time we report next.

B. Experiments with Different Numbers of Objectives

Fig. 2. Comparing MOM∗, NAMOA∗ and MO-CBS with a fixed number
of agents N and varying number of objectives M . In plots (a) and (b),
N = 2. In plots (c) and (d), N = 4.

We begin our tests with the a free grid of size 16 by 16
(“empty-16-16”) and the result is shown in Fig. 2. When
N = 2, from (a), both NAMOA∗ and MOM∗ computes
all Pareto-optimal solutions for almost all the instances
and outperforms MO-CBS. The average number of Pareto-
optimal solutions grows from one to ≈ one hundred when M
grows from one to three. This trend indicates the difficulty
of the problems with an increasing M : for the same graph
with a fixed N , problems with a larger M typically have
more Pareto-optimal solutions and can take longer time for
all three algorithms to compute. Notice that when M = 1,
the MOMAPF problem becomes the conventional (single-
objective) MAPF problem where an optimal solution is



computed. From (b), we observe a similar increase in both
the average number of states expanded and run time over
solved instances. However, MOM∗ expands fewer states and
runs faster than NAMOA∗ on average.

When N = 4, from (c), MOM∗ performs better than
NAMOA∗ and similar to MO-CBS in terms of success
rates. Since MOM∗ solves more instances than NAMOA∗,
the results in (d) becomes less informative. But even when
MOM∗ solves more (possibly hard) instances, the run time
of MOM∗ is still obviously shorter than NAMOA∗.

C. Experiments with Different Number of Agents

Fixing M = 2 (two objectives), we evaluate all three
algorithms in different maps in terms of (1) success rates of
finding all Pareto-optimal solutions, (2) the average number
of states expanded for NAMOA∗ and MOM∗, and (3) aver-
age number of solutions computed, with a varying number
of agents N . The averages are taken over solved instances.
As shown in Table I, MOM∗ (without heuristic inflation)
outperforms NAMOA∗ as it achieves higher success rates
and expands fewer states (when the success rates are sim-
ilar). Comparing with MO-CBS, MOM∗ (without heuristic
inflation) performs better than MO-CBS in the room map
and worse in “den312d” map. In multi-objective settings,
similar to the observation in [4], there is no single multi-
agent planner that outperforms all other planners in all maps.

D. Inflated MOM∗ in Different Maps

To investigate the impact of inflated heuristics of MOM∗

as well as how inflated MOM∗ approximates Pareto-optimal
set, Table I shows the numerical results of MOM∗ with
different inflation rates in different maps.

From Table I, inflated heuristics enable MOM∗ to im-
prove the computational efficiency by approximating Pareto-
optimal sets. First, for the same N (the same column in
the table) and similar success rates, as w increases, MOM∗

expands fewer states and thus terminates earlier. Second,
MOM∗ with larger w finds fewer (bounded sub-optimal)
solutions. Finally, MOM∗ is able to solve more instances
with larger N while MOM∗ with smaller or no heuristic
inflation fails.

E. Time for Computing Pareto Policies

Finally, we investigate the required effort for the pre-
processing step, where heuristics and Pareto policies are
computed. Table II shows the computational time needed
with M = 1, 2, 3, 4 in a 16x16 empty map. When M = 1,
Pareto policies for agents becomes the conventional optimal
policies for agents as used in M∗ [27] since there is only
one optimal neighbor for agent i ∈ I to choose at any
vertices along its path to its goal. In this case, the efforts
for pre-processing is equivalent to an exhaustive backwards
A∗ (or Dijkstra) search over the graph for each agent, which
is computationally cheap (0.037 seconds) from our results.
However, as M increases, it takes significantly more time
to compute Pareto policies since exhaustive multi-objective

search over a graph is much more burdensome (114.07
seconds when M = 4).

Table III shows the required time for pre-processing with
two objectives (M = 2 fixed) in different maps. From the
table, the size of the map is a decisive factor. However,
maps with the same size but of different types may also
have obviously different computing time for Pareto policies,
which is worthwhile for further exploration.

VII. CONCLUSIONS AND FUTURE WORK

A new algorithm called MOM∗ and its variant inflated
MOM∗ were presented for a multi-objective, multi-agent
problem. We prove that MOM∗ is complete and finds all
cost-unique Pareto-optimal solutions. Numerical results were
also presented to compare the performance of MOM∗ with
the existing methods.

There are several directions for future work in this area.
The current approach considers additive costs across agents
and one can extend the method to other types of cost such as
makespan. This work considers minimization type of prob-
lem and one can explore how to apply the proposed algorithm
to maximization type of problem such as multi-objective
information gathering [2]. One can also focus on extend-
ing other MAPF algorithms from single-objective to multi-
objectives such as EPEA∗ [5], SAT-based methods [24].
Another direction is about approximating the Pareto-optimal
set via different approaches other than inflated heuristics,
such as ideas from multi-objective evolutionary algorithms.

REFERENCES

[1] Eli Boyarski, Ariel Felner, Roni Stern, Guni Sharon, David Tolpin,
Oded Betzalel, and Eyal Shimony. Icbs: improved conflict-based
search algorithm for multi-agent pathfinding. In Twenty-Fourth In-
ternational Joint Conference on Artificial Intelligence, 2015.

[2] Weizhe Chen and Lantao Liu. Pareto monte carlo tree search for multi-
objective informative planning. In Robotics: science and systems,
2019.

[3] Matthias Ehrgott. Multicriteria optimization, volume 491. Springer
Science & Business Media, 2005.

[4] Ariel Felner, Roni Stern, Solomon Eyal Shimony, Eli Boyarski, Meir
Goldenberg, Guni Sharon, Nathan Sturtevant, Glenn Wagner, and
Pavel Surynek. Search-based optimal solvers for the multi-agent
pathfinding problem: Summary and challenges. In Tenth Annual
Symposium on Combinatorial Search, 2017.

[5] Meir Goldenberg, Ariel Felner, Roni Stern, Guni Sharon, Nathan
Sturtevant, Robert C Holte, and Jonathan Schaeffer. Enhanced partial
expansion a. Journal of Artificial Intelligence Research, 50:141–187,
2014.

[6] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE Transactions on
Systems Science and Cybernetics, 4(2):100–107, 1968.

[7] Samira Hayat, Evşen Yanmaz, Timothy X Brown, and Christian
Bettstetter. Multi-objective uav path planning for search and rescue.
In 2017 IEEE International Conference on Robotics and Automation
(ICRA), pages 5569–5574. IEEE, 2017.

[8] Jiaoyang Li, Wheeler Ruml, and Sven Koenig. Eecbs: A bounded-
suboptimal search for multi-agent path finding. arXiv preprint
arXiv:2010.01367, 2020.

[9] Ronald Prescott Loui. Optimal paths in graphs with stochastic or
multidimensional weights. Communications of the ACM, 26(9):670–
676, 1983.

[10] Ryan J Luna and Kostas E Bekris. Push and swap: Fast cooperative
path-finding with completeness guarantees. In Twenty-Second Inter-
national Joint Conference on Artificial Intelligence, 2011.



Map Alg.
Success rates / Avg. #states expanded (in thousand) / Avg. #solutions found

N=2 N=4 N=8 N=12 N=16 N=20
NAMOA∗ 1.00/ 3.3/ 11.2 0.16/ 78.1/ 14.3 0/ -/ - 0/ -/ - 0/ -/ - 0/ -/ -
MO-CBS 0.88/ -/ 11.1 0.48/ -/ 25.0 0.08/ -/ 72.5 0/ -/ - 0/ -/ - 0/ -/ -
MOM∗ 1.00/ 1.4/ 11.2 0.76/ 36.0/ 28.7 0.12/ 65.6/ 59.7 0/ -/ - 0/ -/ - 0/ -/ -
MOM∗ w=1.1 1.00/ 0.1/ 2.7 0.96/ 1.5/ 1.9 0.76/ 46.1/ 2.4 0.24/ 5.8/ 1.8 0.08/ 140.6/ 1.0 0/ -/ -
MOM∗ w=1.2 1.00/ 0.06/ 1.5 0.96/ 0.4/ 1.3 0.80/ 5.7/ 1.6 0.48/ 47.0/ 1.4 0.24/ 146.4/ 1.5 0/ -/ -
MOM∗ w=1.5 1.00/ 0.05/ 1.0 1.00/ 1.2/ 1.0 0.96/ 3.4/ 1.1 0.84/ 21.9/ 1.1 0.56/ 162.7/ 1.1 0.04/ 321.9/ 1.0

(Room, 32x32) MOM∗ w=2.0 1.00/ 0.05/ 1.0 1.00/ 0.8/ 1.0 1.00/ 8.5/ 1.1 0.96/ 22.4/ 1.1 0.68/ 69.8/ 1.0 0.16/ 56.8/ 1.0
NAMOA∗ 0.96/ 40.6/ 34.9 0/ -/ - 0/ -/ - 0/ -/ - 0/ -/ - 0/ -/ -
MO-CBS 0.68/ -/ 36.5 0.20/ -/ 128.2 0/ -/ - 0/ -/ - 0/ -/ - 0/ -/ -
MOM∗ 0.96/ 8.3/ 34.9 0.16/ 123.1/ 74.8 0/ -/ - 0/ -/ - 0/ -/ - 0/ -/ -
MOM∗ w=1.1 1.00/ 0.4/ 4.6 1.00/ 2.0/ 5.0 0.72/ 88.8/ 3.3 0.16/ 136.1/ 2.0 0/ -/ - 0/ -/ -
MOM∗ w=1.2 1.00/ 0.1/ 1.9 1.00/ 6.8/ 2.1 0.84/ 20.4/ 1.8 0.36/ 112.9/ 1.6 0.08/ 68.3/ 1.0 0/ -/ -
MOM∗ w=1.5 1.00/ 0.1/ 1.2 1.00/ 0.7/ 1.3 1.00/ 12.4/ 1.2 0.92/ 118.7/ 1.3 0.16/ 106.4/ 1.3 0/ -/ -

(Maze, 32x32) MOM∗ w=2.0 1.00/ 0.1/ 1.1 1.00/ 0.6/ 1.2 1.00/ 8.5/ 1.0 0.96/ 76.2/ 1.1 0.40/ 78.0/ 1.1 0.04/ 108.0/ 1.0
NAMOA∗ 0.32/ 121/ 57.9 0/ -/ - 0/ -/ - 0/ -/ - 0/ -/ - 0/ -/ -
MO-CBS 0.72/ -/ 105.7 0.12/ -/ 180.3 0/ -/ - 0/ -/ - 0/ -/ - 0/ -/ -
MOM∗ 0.56/ 52.5/ 88.9 0.04/ 74.6/ 106.0 0/ -/ - 0/ -/ - 0/ -/ - 0/ -/ -
MOM∗ w=1.1 1.00/ 12.2/ 18.7 0.88/ 18.7/ 9.0 0/ -/ - 0/ -/ - 0/ -/ - 0/ -/ -
MOM∗ w=1.2 1.00/ 0.6/ 5.6 1.00/ 7.6/ 2.9 0.20/ 12.2/ 3.2 0/ -/ - 0/ -/ - 0/ -/ -
MOM∗ w=1.5 1.00/ 0.2/ 1.5 1.00/ 0.4/ 1.2 0.24/ 5.5/ 1.2 0/ -/ - 0/ -/ - 0/ -/ -

(den312d, 65x81) MOM∗ w=2.0 1.00/ 0.2/ 1.2 1.00/ 0.3/ 1.1 0.28/ 5.0/ 1.1 0/ -/ - 0/ -/ - 0/ -/ -

TABLE I
NUMERICAL RESULTS IN VARIOUS ENVIRONMENTS WITH TWO OBJECTIVES (M = 2).

M 1 2 3 4
Time (seconds) 0.037 0.46 5.65 114.07

TABLE II
PRE-PROCESSING TIME AS A FUNCTION OF M WITH N = 2.

Map (Width x Height) Time (seconds)
Empty (16x16) 0.46
Room (32x32) 0.92
Maze (32x32) 4.99

den312d (65x81) 76.88

TABLE III
PRE-PROCESSING TIME WHEN M = 2, N = 2 IN DIFFERENT MAPS.

[11] Hang Ma, Daniel Harabor, Peter J Stuckey, Jiaoyang Li, and Sven
Koenig. Searching with consistent prioritization for multi-agent
path finding. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 7643–7650, 2019.

[12] Lawrence Mandow, JL Pérez De la Cruz, et al. A new approach to
multiobjective a* search. In IJCAI, volume 8. Citeseer, 2005.

[13] Judea Pearl. Intelligent search strategies for computer problem solving.
Addision Wesley, 1984.

[14] Zhongqiang Ren, Sivakumar Rathinam, and Howie Choset. Multi-
objective conflict-based search for multi-agent path finding. arXiv
preprint arXiv:2101.03805, 2021.

[15] Diederik M Roijers, Peter Vamplew, Shimon Whiteson, and Richard
Dazeley. A survey of multi-objective sequential decision-making.
Journal of Artificial Intelligence Research, 48:67–113, 2013.

[16] Antonio Sedeño-Noda and Marcos Colebrook. A biobjective dijkstra
algorithm. European Journal of Operational Research, 276(1):106–
118, 2019.

[17] Paolo Serafini. Some considerations about computational complexity
for multi objective combinatorial problems. In Recent advances
and historical development of vector optimization, pages 222–232.
Springer, 1987.

[18] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R Sturtevant.
Conflict-based search for optimal multi-agent pathfinding. Artificial
Intelligence, 219:40–66, 2015.

[19] David Silver. Cooperative pathfinding. pages 117–122, 01 2005.
[20] Amir R Soltani, Hissam Tawfik, John Yannis Goulermas, and Terrence

Fernando. Path planning in construction sites: performance evaluation

of the dijkstra, a*, and ga search algorithms. Advanced engineering
informatics, 16(4):291–303, 2002.

[21] Trevor Scott Standley. Finding optimal solutions to cooperative
pathfinding problems. In Twenty-Fourth AAAI Conference on Artificial
Intelligence, 2010.

[22] Roni Stern, Nathan Sturtevant, Ariel Felner, Sven Koenig, Hang Ma,
Thayne Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen, TK Kumar,
et al. Multi-agent pathfinding: Definitions, variants, and benchmarks.
arXiv preprint arXiv:1906.08291, 2019.

[23] Bradley S. Stewart and Chelsea C. White. Multiobjective a*. J. ACM,
38(4):775–814, October 1991.

[24] Pavel Surynek, Ariel Felner, Roni Stern, and Eli Boyarski. Modifying
optimal sat-based approach to multi-agent path-finding problem to
suboptimal variants. 07 2017.

[25] Matthew Tesch, Jeff Schneider, and Howie Choset. Expensive mul-
tiobjective optimization for robotics. In 2013 IEEE International
Conference on Robotics and Automation, pages 973–980. IEEE, 2013.

[26] Carlos Hernández Ulloa, William Yeoh, Jorge A Baier, Han Zhang,
Luis Suazo, and Sven Koenig. A simple and fast bi-objective
search algorithm. In Proceedings of the International Conference
on Automated Planning and Scheduling, volume 30, pages 143–151,
2020.

[27] Glenn Wagner and Howie Choset. Subdimensional expansion for
multirobot path planning. Artificial Intelligence, 219:1–24, 2015.

[28] Glenn Wagner and Howie Choset. Path planning for multiple agents
under uncertainty. In Twenty-Seventh International Conference on
Automated Planning and Scheduling, 2017.

[29] Glenn Wagner, Minsu Kang, and Howie Choset. Probabilistic path
planning for multiple robots with subdimensional expansion. In 2012
IEEE International Conference on Robotics and Automation, pages
2886–2892. IEEE, 2012.

[30] Ko-Hsin Cindy Wang, Adi Botea, et al. Fast and memory-efficient
multi-agent pathfinding. In ICAPS, pages 380–387, 2008.

[31] J. Weise, S. Mai, H. Zille, and S. Mostaghim. On the scalable multi-
objective multi-agent pathfinding problem. In 2020 IEEE Congress
on Evolutionary Computation (CEC), pages 1–8, 2020.

[32] Peter R Wurman, Raffaello D’Andrea, and Mick Mountz. Coordinat-
ing hundreds of cooperative, autonomous vehicles in warehouses. AI
magazine, 29(1):9–9, 2008.

[33] Jingjin Yu and Steven M LaValle. Structure and intractability of
optimal multi-robot path planning on graphs. In Twenty-Seventh AAAI
Conference on Artificial Intelligence, 2013.


