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Abstract— The Combined Target-Assignment and Path-
Finding (TAPF) problem requires simultaneously assigning
targets to agents and planning collision-free paths for them
from their start locations to their assigned targets. As a
leading approach to addressing TAPF, Conflict-Based Search
with Target Assignment (CBS-TA) leverages K-best target
assignments to create multiple search trees and Conflict-Based
Search (CBS) to resolve collisions in each tree. While CBS-
TA finds optimal solutions, it faces scalability challenges due
to the duplicated collision resolution in multiple trees and the
expensive computation of K-best assignments. We introduce
Incremental Target Assignment CBS (ITA-CBS) to bypass
these two computational bottlenecks. ITA-CBS generates only
a single search tree and avoids computing K-best assignments
by incrementally computing new 1-best assignments during the
search. We show that ITA-CBS, in theory, is guaranteed to find
optimal solutions and, in practice, runs faster than CBS-TA in
96.1% of 6,334 test cases.

I. INTRODUCTION

The Multi-Agent Path Finding (MAPF) problem requires
planning collision-free paths for multiple agents from their
respective start locations to pre-assigned target locations
while minimizing the sum of path costs [1]. Solving MAPF
to optimality is NP-hard [2], and many algorithms have been
developed to handle this computational challenge. Among
them, Conflict-Based Search (CBS) [3] is a widely used
approach that finds optimal solutions to MAPF.

This work considers a variant of MAPF that is often re-
ferred to as Combined Target-Assignment and Path-Finding
(TAPF) [4], [5], where the target locations of the agents
are not pre-assigned but need to be allocated during the
computation: TAPF requires assigning each agent a unique
target (location) out of a pre-specified set of candidate targets
and then finds collision-free paths for the agents so that the
sum of path costs is minimized. When the candidate target set
of each agent contains only a single target, TAPF becomes
MAPF and is thus NP-hard.

MAPF and TAPF arise in many applications such as
robotics [6], computer gaming [7], warehouse automa-
tion [8], traffic management at road intersections [9]. Several
attempts [5], [10] have been made to solve TAPF opti-
mally by leveraging MAPF algorithms such as CBS [3].
Among them, a leading approach is Conflict-Based Search
with Target Assignment (CBS-TA) [5], which simultaneously
explores different target assignments and creates multiple
search trees (i.e., a CBS forest) while planning collision-free
paths with respect to each assignment.
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CBS-TA suffers from poor scalability as the number of
agents or targets increases for the following two reasons.
First, CBS-TA may resolve the same collision in multiple
search trees many times, leading to duplicated computation
and low search efficiency. Second, CBS-TA involves solving
a K-best target assignment [11], [12] problem, which is
often computationally expensive. We thus attempt to bypass
these two computational bottlenecks by exploring a new
framework for integrating CBS with target assignment. The
resulting algorithm is called Incremental Target Assignment
CBS (ITA-CBS). First, ITA-CBS creates only a single search
tree, thereby avoiding duplicated collision resolution in dif-
ferent trees, as seen in CBS-TA. Second, ITA-CBS eliminates
the need to solve the K-best assignment problem. Instead,
it updates the target assignment in an incremental manner
during the CBS-like search, which further reduces the com-
putational effort. Our experimental results show significant
improvement in efficiency: ITA-CBS is faster than CBS-TA
in 96.1% of the test cases, 5 times faster in 38.7% of the
test cases, and 100 times faster in 5.6% of the test cases, as
evaluated across 6,334 test cases.

II. PROBLEM DEFINITION

We define the Combined Target-Assignment and Path-
Finding (TAPF) problem as follows. Let I = {1, 2, · · · , N}
denote a set of N agents. Let G = (V,E) denote an
undirected graph, where each vertex v ∈ V represents a
possible location of an agent in the workspace, and each
edge e ∈ E is a unit-length edge between two vertices
that moves an agent from one vertex to the other. Self-loop
edges are allowed, which represent “wait-in-place” actions.
Each agent i ∈ I has a unique start location si ∈ V . Let
{gj ∈ V |j ∈ {1, 2, ...,M}}, M ≥ N , denote the set of M
target locations. Let A denote a binary N×M target matrix,
where each entry A[i][j] (the i-th row and j-th column in
A) is one if agent i is eligible to be assigned to target gj
and zero otherwise. For convenience, we refer to the set of
target locations {gj} with A[i][j] = 1 as the target set for
agent i. Our task is to assign each agent i a unique target
gj from its target set and plan corresponding collision-free
paths.

Each action of agents, either waiting in place or moving to
an adjacent vertex, takes a time unit. Let pi = [vi0, v

i
1, ..., v

i
T i ]

denote a path of agent i from vi0 to viT i , where vit ∈ V
denotes the location of agent i at timestep t. We assume
that agents rest at their targets after completing their paths,
i.e., vit = viT i ,∀t ≥ T i. We consider two types of agent-
agent conflicts (i.e., collisions) along their paths. The first



type is the vertex conflict, where two agents i, j occupy the
same vertex at the same timestep. The second type is the
edge conflict, where two agents go through the same edge
from opposite directions at the same timestep. We use (i, j, t)
to denote a vertex/edge conflict between agents i and j at
timestep t. It is important to note that the requirement of
being conflict-free implies that the target locations assigned
to the agents must be distinct from each other.

The goal of the TAPF problem is to find a set of paths
{pi|i ∈ I} for all agents such that, for each agent i:

1) vi0 = si (i.e., agent i starts from its start location);
2) vit = gj ,∀t ≥ T i and A[i][j] = 1 (i.e., agent i stops at

a target location gj in its target set);
3) Every pair of adjacent vertices in path pi is either

identical or connected by an edge (i.e., vit = vit+1 ∨
(vit, v

i
t+1) ∈ E,∀t ≥ 0);

4) {pi|i ∈ I} is conflict-free; and
5) The flowtime

∑N
i=1 T

i is minimized.

III. RELATED WORK

A. MAPF

MAPF can be viewed as a special case of TAPF where
the size of the target set for each agent is one. MAPF has
a long history [13], [14] and remains an active research
problem [15], [16]. A variety of methods are developed
to address MAPF, trading off completeness and optimality
for runtime efficiency. These methods range from decoupled
methods [14], [17], [18], which plan a path for each agent
independently and synthesize the paths, to coupled meth-
ods [1], which plan for all agents together. Among them,
Conflict-Based Search (CBS) [3] is a leading (centralized)
optimal MAPF algorithm and forms the foundation of this
paper.

CBS is a two-level search algorithm. Its low level plans
a shortest path for an agent from its start location to its
target location. Its high level searches a binary Constraint
Tree (CT). Each CT node H = (c,Ω, π) includes a constraint
set Ω, a plan π, which is a set of shortest paths for all agents
from their start locations to their target locations that satisfy
Ω, and a cost c, which is the flowtime of π. When expanding
H , CBS selects and resolves the first conflict in H.π, even
when multiple conflicts occur in H.π. It formulates two
constraints, wherein each constraint prohibits one agent from
executing its originally intended action at the conflicting
timestep, and adds them to two successor nodes, respectively.
We define two types of constraints, namely vertex constraint
(i, v, t) that prohibits agent i from occupying vertex v at
timestep t and edge constraint (i, u, v, t) that prohibits agent
i from going from vertex u to vertex v at timestep t. By
maintaining a priority queue based on the cost of each
node, CBS is provably optimal with respect to the flowtime
minimization.

B. Assignment Problem and TAPF

Given N agents, M tasks, and a N ×M matrix denoting
the corresponding assignment cost of each task to each agent,
the task assignment problem [19], [20], [21] seeks to allocate

the tasks to agents such that each agent is assigned to a
unique task and the total assignment cost is minimized.
Popular methods used to address this problem include the
Hungarian algorithm [20], [21] and the Successive Shortest
Path (SSP) algorithm [22], [23]. Additionally, the Dynamic
Hungarian algorithm [24] aims to quickly re-compute an
optimal assignment based on the existing assignment when
some entries change in the cost matrix.

TAPF can be viewed as a combination of the MAPF
problem and the target assignment problem. While MAPF
has a pre-defined target for each agent, TAPF involves si-
multaneously assigning targets to agents and finding conflict-
free paths for them. The leading algorithms for solving
TAPF optimally include CBM [4], which combines CBS with
maxflow algorithms to minimize makespan (i.e., max{T i}),
and CBS-TA [5], which construct a CBS forest to minimize
flowtime. Our work is built upon CBS-TA.

CBS-TA operates on the following principle: a fixed Target
Assignment (TA) solution transforms a TAPF problem into
a MAPF problem, and each MAPF problem corresponds to
a CT. CBS-TA efficiently explores all nodes of various CTs
(CBS forest) by enumerating every TA solution. Each CT
node H = (c,Ω, π, πta, r) in CBS-TA has two extra fields
compared to that in CBS: a TA solution πta, that assigns each
agent a unique target location, and a root flag r signifying
if H is a root. Two nodes have the same TA solution if
and only if they belong to the same CT. CBS-TA maintains
a priority queue to store the nodes from all CTs and lazily
generates roots with different TA solutions for different CTs.
Because the cost of a root equals the total assignment cost
of its TA solution, CBS-TA will not expand a root if there is
another root in the priority queue with a TA solution of lower
total assignment cost. Consequently, CBS-TA first generates
only one root node with the optimal TA solution. It then
generates a new root with the succeeding optimal TA solution
only when the current one has been expanded. Motivated by
K-best task assignment algorithms [11], [12] and SSP with
Dijkstra algorithm, CBS-TA finds the succeeding optimal TA
solution with a time complexity of O(N2M2).

Many TAPF variants have been extensively explored.
For instance, researchers have extended TAPF to scenarios
where each agent can be assigned multiple targets, requiring
them to visit these targets sequentially [25], [26], [27]. It’s
noteworthy that, owing to the success of CBS-TA, numerous
extensions [28], [4], [29], [30], [31] follow a similar CBS
forest approach. Therefore, although our primary focus in
this paper is on classic TAPF, our proposed algorithm has
the potential to accelerate these extension works as well.

IV. ITA-CBS

Our ITA-CBS has the same low-level search as CBS and
CBS-TA but a different high-level search. Each CT node
H = (c,Ω, π, πta,Mc) in ITA-CBS has two extra fields
compared to that in CBS: a TA solution πta and a N ×M
cost matrix Mc. Each entry Mc[i][j] of Mc is the cost of the
shortest path from si to gj that satisfies the constraint set



Algorithm 1 ITA-CBS algorithm
Input: Graph G, start locations {si}, target locations {gi}, target
matrix A
Output: Optimal TAPF solution

1: OPEN = PriorityQueue()
2: Ω0 = ∅
3: for each (i, j) ∈ {1, · · · , N} × {1, · · · ,M} do
4: if A[i][j] = 1 then
5: M0

c [i][j] = shortestPathSearch(G, si, gj , Ω0)
6: else
7: M0

c [i][j] = ∞
8: π0

ta = optimalTargetAssignment(M0
c )

9: c0, π0 = getPlan(π0
ta, M0

c )
10: H0 = {c0,Ω0, π0, π0

ta,M
0
c }

11: Insert H0 to OPEN
12: while OPEN not empty do
13: Hcur = OPEN front node; OPEN.pop()
14: Validate Hcur.π until a conflict occurs
15: if Hcur.π has no conflict then
16: return Hcur.π
17: (i, j, t) = getFirstConflict(Hcur.π)
18: for each agent k in (i, j) do
19: Q = Hcur

20: if (i, j, t) is vertex conflict then
21: Q.Ω = Q.Ω ∪ (k, vkt , t)
22: else
23: Q.Ω = Q.Ω ∪ (k, vkt−1, vkt , t)
24: for each x with A[k][x] = 1 do
25: Q.Mc[k][x] = shortestPathSearch(G, sk, gx, Q.Ω)
26: Q.πta = optimalTargetAssignment(Q.Mc)
27: Q.c,Q.π = getPlan(Q.πta, Q.Mc)
28: Insert Q to OPEN
29: return No valid solution

Ω1 if A[i][j] = 1 (i.e., target gj is included in the target set
of agent i) and ∞ otherwise. πta is the optimal TA solution
based on Mc. π is the set of the shortest paths for all agents
with respect to πta that satisfies Ω. c is the flowtime of π,
which is identical to the total assignment cost of πta.

As shown in Algorithm 1, ITA-CBS begins by creating
the root node with an empty Ω and the corresponding Mc

and πta (Lines 2-10). It maintains a priority queue to store
all CT nodes that are generated during the search (Lines 1,
11-13, 28). In each iteration, ITA-CBS selects a node Hcur

with the minimum cost from the priority queue and checks if
its plan is conflict-free. If so, this plan is guaranteed to be an
optimal solution (Lines 13-16). Otherwise, ITA-CBS uses the
first detected conflict (Line 17) to create two new constraints
as in CBS. It then creates two child nodes identical to Hcur

and adds each constraint respectively to the constraint set of
the two child nodes (Lines 18-23). For each new node Q
(with a constraint on agent k added), the low-level search
is invoked for agent k to recompute the optimal paths from
its start location to all possible targets subject to the new
constraint set. The costs of these planned paths are then used
to update the cost matrix Mc in Q (Lines 24-25). Since Mc

changes, the TA solution, the plan, and the cost should also
be updated (Lines 26-27).

1In our implementation, we also store this shortest path so that, after we
determine πta, we can construct π directly from these stored paths.

A. Incremental Target Assignment

In Algorithm 1 Line 8, we use the Hungarian algorithm to
get the TA solution for the root node. The Hungarian algo-
rithm solves bipartite graph matching optimally. A bipartite
graph is a graph whose vertices can be decomposed into two
disjoint sets such that no edges connect the vertices within
the same set. In ITA-CBS, we form one vertex set with all N
agents and the other vertex set with all M targets. We add an
edge between an agent and a target if the corresponding entry
in the cost matrix is finite. The Hungarian algorithm assigns
each vertex v a value l(v) such that Mc[u][v] ≤ l(u) + l(v)
holds for every edge (u, v). An unweighted subgraph is then
formed by including all vertices and edges satisfying the
condition M(u, v) = l(u) + l(v). It is proven that if the
matching of this subgraph is a perfect matching, then this
matching is an optimal matching in Mc [21]. The Hungarian
algorithm adjusts vertex values to achieve a perfect matching
in this subgraph with a time complexity of O(M3).

While we can continue to use the Hungarian algorithm
to get the TA solution in Line 26, running the Hungarian
algorithm from scratch at every CT node is too costly for
ITA-CBS. In ITA-CBS, a child node contains only one
new constraint on an agent compared to its parent node.
Consequently, the cost matrix of the child node differs
from that of the parent node only in the row pertaining
to that particular agent. Therefore, we employ the dynamic
Hungarian algorithm [24], [32] to reuse the TA solution from
the parent node. We unmatch the vertex pair corresponding
to the particular agent and adjust the vertex value l(i) for
each affected vertex i, ensuring that M(u, v) ≤ l(u) + l(v)
still holds. This dynamic Hungarian algorithm finds a new
TA solution with a time complexity of O(M2), significantly
faster than the Hungarian algorithm used by the root node
of ITA-CBS (which is O(M3)) and the K-best assignment
used by CBS-TA (which is O(N2M2)).

B. Example

Fig.1 shows an example of our algorithm on a small map
with 2 agents. To begin with, we generate the first node
H1 by calling the low-level search to get Mc, calling the
Hungarian algorithm to get πta from Mc, and then obtaining
π and c. Since there is no constraint in Ω, agent 1 moves
to d in 3 timesteps, and agent 2 moves to c in 1 timestep,
leading to a vertex conflict at c at timestep 2. To resolve this
conflict, two child nodes H2, H3 are created. With the new
constraint added to Ω in each child node, we update Mc,πta,
π, and c corresondingly. Consequently, the node order in
OPEN becomes [H3, H2]. Next, we expand H3 and find a
vertex conflict at c at timestep 3. We thus generate two nodes
H6, H7. The updated OPEN is [H2, H7, H6]. In H2, we
have an edge conflict along edge (c, d) at timestep 3. Upon
addressing this conflict, OPEN becomes [H4, H7, H5, H6].
Within H4, Mc exhibits two equal TA solutions: {1 →
d, 1 → c} and {1 → d, 1 → e}. Assume that we select
the second TA solution. Finally, there is no conflict in H4.π,
so we find am optimal solution with a flowtime of 6.
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Fig. 1: CT of ITA-CBS for a simple TAPF problem. The top left drawing shows a simple map with 5 cells (a, b, c, d, e) and 2 agents
(1, 2). Start locations for agent 1 and agent 2 are a and b, respectively. The target sets of agents 1 and 2 are {d, e} and {c, e}, respectively.
Each CT node H is represented by a blue rounded rectangle.

C. Properties of ITA-CBS

This section shows that ITA-CBS is guaranteed to find an
optimal TAPF solution if one exists.

Lemma 1. The cost of each CT node is a lower bound on the
flowtime of all solutions that satisfy the node’s constraints.

Proof Sketch. Consider a CT node H = (c,Ω, π, πta,Mc).
Let {pi} be an arbitrary solution that satisfies Ω. Since the
entries of Mc correspond to the costs of the shortest paths
that satisfy Ω, the cost of each path pi in {pi} is no smaller
than the corresponding entry (i.e., the entry with the same
start and target locations) of Mc. That is, the flowtime of
{pi} is no smaller than the total assignment cost of the
corresponding TA solution based on Mc. Since πta is the
optimal TA solution based on Mc, the flowtime of {pi} is
no smaller than the total assignment cost of πta, which equals
c. Therefore, the lemma holds.

Lemma 2. Every solution that satisfies the constraints of a
CT node must also satisfy the constraints of at least one of
its child nodes.

Proof Sketch. We prove by contradiction and assume that
there is a solution {pi} that satisfies the constraints of a
CT node H but does not satisfy the constraints of either
child node. Suppose the conflict chosen to resolve in H is
between agents i and j at vertex v (or edge e) at timestep
t. Since each child node has only one additional constraint

compared to node H , we know that {pi} violates both
additional constraints. That is, both path pi and path pj

visit vertex v (or edge e) at timestep t, which leads to a
conflict and contradicts the assumption that {pi} is conflict-
free. Therefore, the lemma holds.

Lemma 3. During the search, every solution must satisfy
the constraints of at least one CT node in the OPEN list.

Proof Sketch. Since the root CT node has no constraints, all
solutions satisfy the constraints of the root CT node. When
we pop a CT node from the OPEN list, we insert its child
nodes back into the OPEN list. According to Lemma 3, this
lemma holds.

Theorem 1. ITA-CBS guarantees to find an optimal TAPF
solution if one exists.

Proof Sketch. According to Lemmas 1 and 3, the minimum
cost of the CT nodes in the OPEN list is a lower bound on the
flowtime of all solutions. Thus, when ITA-CBS terminates,
its returned solution is guaranteed to be optimal.

V. EXPERIMENTAL RESULTS

We compare the performance of ITA-CBS with CBS-TA
since, to our best knowledge, CBS-TA is the only existing
work that solves TAPF optimally for flowtime. We imple-
ment both ITA-CBS and CBS-TA in C++ partially based on



Fig. 2: Success rates. In the legend, “G_” indicates the group test results, while “xxx_” indicates the common target test results. For
instance, 000 indicates that there is no shared target, and 100 indicates that all agents share the same target set.
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Fig. 3: Runtime. We record the runtime as 30s for timeout test
cases, so there is a line at the top of the figure.

the existing CBS-TA implementation.2 All experiments were
executed on a computer with Ubuntu 20.04.1, AMD Ryzen
3990X 64-Core Processor, 64G RAM with 2133 MHz.

We use 8 different maps, shown in Fig.2, from the
MAPF Benchmark sets [33]: (1) random-32-32-10 (32x32)
and empty-32-32 (32x32) are open grids with and without
random obstacles, (2) den312d (65x81) is from video game
Dragon Age Origins, (3) maze-32-32-2 (32x32) is a maze-
like grid, (4) room-64-64-8 (64x64), denoted by room is
a room-like grid, (5) warehouse-10-20-10-2-1 (161x63) is
inspired by real-world autonomous warehouse applications,
and (6) orz900d (1491x656) and Boston-0-256 (256x256)
are the first and second largest maps among all benchmark

2The CBS-TA source code is publicly available at https://github.
com/whoenig/libMultiRobotPlanning. Our code is available at
https://github.com/TachikakaMin/ITA-CBS2. Our CBS-TA
implementation runs faster than the original one based on our tests.

map files.

A. Test Settings

We design two types of test scenarios: (1) Group Test:
We randomly divide agents into groups of size 5. Agents
within the same group share a target set of size 5. Target sets
from different groups do not contain any identical targets.
(2) Common Target Test: For each map, every agent has
a target set of the same size, which is 15, 40, 15, 15, 50,
80, 20, and 20 for maps random-32-32-10, den312d, empty-
32-32, maze-32-32-2, room-64-64-8, warehouse-10-20-10-2-
1, orz900d, and Boston-0-256, respectively.3 Each target set
contains both targets shared among all agents and unique
targets. We vary the ratio of shared targets in each target
set from 0%, 30%, 60%, to 100%, resulting in four test
scenarios. However, we ensure that each target set always
includes at least one unique target to guarantee the existence
of a solution.

For each test scenario, map, and number of agents, we
generate 20 test cases with randomly selected start and target
locations. An algorithm is considered to have failed for a
given test case if it does not find an optimal solution within
30 seconds. The success rate is the percentage of the test
cases where the algorithm succeeds out of the 20 test cases.

B. Overall Performance

Fig.2 shows the success rates. In the Group Test (black
lines), ITA-CBS outperforms CBS-TA across all maps. In
the Common Target Test, the success rates decrease for both

3The sizes of these target sets are determined by having the targets occupy
all empty grid cells on the map under the 0% scenario, except for large maps
orz900d and Boston-0-256. On these large maps, the size of the target sets
is limited to 20 to prevent both algorithms from timing out in any test case
due to an excessive number of targets.

https://github.com/whoenig/libMultiRobotPlanning
https://github.com/whoenig/libMultiRobotPlanning
https://github.com/TachikakaMin/ITA-CBS2
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0.51s, 0.22s, 0.058s} and {0.006s, 0.36s, 0.032s, 0.027s}, re-
spectively.

algorithms as the ratio of the shared targets increases, but
ITA-CBS still outperforms CBS-TA in almost all cases.

Fig.3 shows the runtime. We have a total of 7,600 test
cases, including 5,134 test cases solved by both algorithms,
1,191 test cases solved only by ITA-CBS, 9 test cases solved
only by CBS-TA, and 1,266 test cases that both algorithms
fail to solve. As shown, ITA-CBS is faster in 96.1% test
cases, 5 times faster in 38.7% test cases, and 100 times faster
in 5.6% test cases than CBS-TA among the 6,334 test cases
solved by at least one algorithm.

C. Program Profile

We compare the detailed performance of the two algo-
rithms using the 5,134 test cases solved by both of them.
In Figure 5, we show the average runtime for various parts
of each algorithm and divide the algorithm runtime into 4
parts: TA runtime (Algorithm 1 Lines 8, 26), low-level search
runtime (Algorithm 1 Lines 3-7, 24-25), conflict detection
runtime (Algorithm 1 Lines 14 and 17), and others.

ITA-CBS is faster than CBS-TA for all components,
primarily due to its significantly reduced node expansions
compared to CBS-TA. Notably, the TA runtime in ITA-

CBS is 200 times smaller than that in CBS-TA, which is
an interesting result since ITA-CBS calls TA algorithms at
every CT node while CBS-TA calls TA algorithms only at
roots.

To understand this result, Fig.4 (left) compares the average
runtime per TA algorithm call for each test case. This shows
that the TA algorithm in ITA-CBS (i.e., Dynamic Hungarian)
is significantly faster than that in CBS-TA (i.e., K-best
assignment). Fig.4 (middle) reveals another interesting result,
where ITA-CBS requires fewer TA algorithm calls. This is
primarily due to two factors: (1) ITA-CBS has significantly
fewer node expansions than CBS-TA, as illustrated in Fig-
ure 4 (right), and (2) CBS-TA often generates a substantial
number of CTs; across 5,134 test cases, on average, 37.7%
of CT nodes generated by CBS-TA are roots.

VI. CONCLUSION

This work develops a new algorithm called Incremental
Target Assignment CBS (ITA-CBS) to solve the TAPF
problem to optimality with flowtime. ITA-CBS distinguishes
itself from the prior leading algorithm, CBS-TA, in two
key ways: First, ITA-CBS constructs a single constraint tree
throughout the search, leading to a reduction in CT nodes
compared to CBS-TA. Second, ITA-CBS avoids solving the
K-best assignment problem, and instead, it updates the target
assignment in an incremental manner during the CBS-like
search, which further reduces the computational effort. We
prove that ITA-CBS is optimal and show empirically that it
runs significantly faster than CBS-TA.
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