
Multi-Agent Multi-Objective Ergodic Search using Branch and Bound

Akshaya Kesarimangalam Srinivasan∗, Geordan Gutow∗, Zhongqiang Ren∗, Ian Abraham†,
Bhaskar Vundurthy∗ and Howie Choset∗

Abstract— Search and rescue applications often need multiple
agents to complete a set of conflicting tasks. This paper studies
a Multi-Agent Multi-Objective Ergodic Search (MA-MO-ES)
approach to this problem where each objective or task is to
cover a domain subject to an information map. The goal is to
allocate coverage tasks to agents so that all maps are explored
ergodically. The combinatorial nature of task allocation makes
it computationally expensive to solve for optimal allocation
using brute force. Apart from a large number of possible
allocations, computing the cost of a task allocation is itself
an expensive planning problem. To mitigate the computational
challenge, we present a branch and bound-based algorithm
with pruning techniques that reduce the number of allocations
to be searched to find optimal coverage task allocation. We
also present an approach to leverage the similarity between
information maps to further reduce computation. Extensive
testing on 147 randomly generated test cases shows an order of
magnitude improvement in runtime compared to an exhaustive
brute force approach.

I. INTRODUCTION

Applications such as search and rescue [1], surveillance
[2], and planetary exploration [3] all require planning for
multiple robots to collectively search a domain to gain
information about it. In complex scenarios, there may be
multiple competing forms of information to collect, which
have different scales across the domain; which we refer to
as information maps. In such a scenario, it is natural to
cast the problem as a multi-objective optimization where
each objective is to cover the domain subject to a single
map. In a multi-agent setting, the problem further demands
the appropriate allocation of agents to information maps to
ensure effective coverage of all maps. We approach this
problem as a Multi-Agent Multi-Objective Ergodic Search
(MA-MO-ES) problem as shown in Fig. 1.

Prior work [4] found a set of Pareto-optimal solutions
for a single agent with multiple objectives in a shared
workspace, that leverages the ergodic metric. The ergodic
metric measures the quality of coverage and is minimized
when the time spent observing a region is proportional to the
information in that region. In this paper, we are interested
in reconciling the multiple objectives by minimizing the
maximum of the objectives, i.e., the worst ergodicity on an
information map. Thus, the task allocation aims to allocate
each agent to one or more information maps such that the

∗Akshaya Kesarimangalam Srinivasan, Geordan Gutow, Zhongqiang Ren,
Bhaskar Vundurthy, and Howie Choset are with Carnegie Mellon University,
5000 Forbes Ave., Pittsburgh, PA 15213, USA. (email: {akesarim, ggutow,
zhongqir, pvundurt, choset}@andrew.cmu.edu).

†Ian Abraham is with Yale University, 17 Hillhouse Avenue, New Haven,
CT 06511, USA. (email: ian.abraham@yale.edu)

Fig. 1: This figure illustrates the Multi-agent Multi-objective
Ergodic Search (MA-MO-ES) problem using five informa-
tion maps (1− 5) that span the same physical region, and
three agents (Red, Blue, and Green). The optimal allocation
is shown with each agent in a different box. An agent’s
trajectory is optimized on a weighted average of its maps
and evaluated by reconstructing the trajectory on each map.

maximum or worst ergodicity on any map is minimized, i.e.,
minmax optimization.

According to the taxonomy defined in [5], our problem is a
multi-task single-robot time-extended variation of the Multi-
Robot Task Allocation (MRTA) problem that is NP-Hard [6].
Prior works have addressed multi-agent multi-objective task
allocation problems using auctioning systems [7], greedy
allocation [8], evolutionary methods [9] etc. While the ap-
proaches in [8],[7] are fast, they do not guarantee finding the
optimal allocation scheme in the minmax sense.

In this work, we leverage the minmax formulation to
eliminate non-optimal solutions without evaluating the per-
formance on all the maps for each possible allocation. If
the worst ergodicity on a map for a partial allocation, i.e.,
assignment of maps to a subset of agents exceeds that of
the current best allocation, then the worst ergodicity for the

complete allocation would also exceed the current best. Us-
ing this idea, we present a branch and bound formulation for
allocating maps to agents. Compared to exhaustive search,
the branch and bound approach reduces runtime by an order
of magnitude while guaranteeing minmax optimal allocation.

We also propose an approach to leverage similarity be-
tween information maps to reduce further the number of pos-
sible allocations to be considered. The runtime and minmax
metric of these approaches were compared against baseline
approaches on 147 randomly generated test cases.

The remainder of the paper is organized as follows:
Section III-A introduces basic concepts. The problem for-
mulation is presented in Section III-B. Section IV-A explains
a branch and bound approach to the problem. Section IV-B
proposes a similarity-based clustering algorithm with branch
and bound. Section V provides numerical results demonstrat-
ing improvement over the baseline approach, and the task
allocation approach in [8]. Finally, Section VI presents some
conclusions and possible directions for future work.

II. RELATED WORKS

A. Ergodic Coverage

Given an information map, a trajectory is ergodic when
the Fourier basis functions along the trajectory converge to
the spatial averages of the basis functions [10], i.e., when
the time spent in an area is proportional to the information
present in that area. This trajectory can be achieved by min-
imizing the ergodic metric [10]. Ergodic trajectory planning
has been studied in various contexts such as receding horizon
control [11], stochastic optimization [12], active learning
and search [13][14], decentralized exploration [15], and real-
time area coverage and target localization [16]. Our prior
work [4] addresses the single-agent multi-objective ergodic
search problem. It illustrates a local sequential optimization
approach to compute a Pareto optimal front of solutions
quickly and accurately [17]. However, we are unaware of
any ergodic search method that considers covering a domain
subject to multiple information maps with multiple agents,
which is the focus of this work.

B. Multi-agent Multi-objective Task Allocation and Path
Planning

The core contribution of this work is task allocation for
multiple agents. Multi-agent task allocation is widely studied
in literature [18]. The authors of [19] extend the frontier-
based algorithm to multi-objective problems, but with a
greedy task allocation approach. Work in [20] addresses tasks
with unknown allocation costs like in ours but with a single
objective. While [1] optimizes multi-agent path planning to
detect multiple targets modeled using prior cell occupancy
probability distribution using a MILP approach, the task
allocation is not explicit, making it difficult to cover multiple
conflicting distributions.

Two prior works related to the approach of the current
work are [7] and [8]. The authors of [8] propose two
frameworks for task allocation, the Compromise View model
and the Nearest Neighbour Search model. The former uses

the agent’s distance from the target as the heuristic for greedy
task assignments whereas the latter clusters target locations
using k-means clustering for faster but higher path-length
solutions. The work in [7] presents a framework for multiple
agents to perform exploration, rendezvous, and tasks in a
cell-decomposed environment. The cells to be visited are
clustered, one for each agent, and assigned via centralized
auction based on agents’ distance to the cluster centroids
and a multi-objective optimization method based on weighted
prioritization of exploration and task completion. Both works
demonstrate the effectiveness of clustering for task allocation
in multi-agent scenarios. Our work differs from [7] and
[8] in two ways. Computing the cost of allocation is itself
a trajectory optimization problem and hence expensive to
obtain accurately. The tasks are not waypoints that need
to be visited but are coverage tasks subject to information
maps. Clustering has also been used for task assignment
of parallel programs to processors [21]. It aims to allocate
tasks to processors for load balancing while reducing the cost
of communication overhead and processor turn-around time.
First, clusters are identified in a task graph, with tasks as
nodes and communication between tasks as edge weights,
such that intra-cluster communication is high and inter-
cluster communications are minimum. This clustering with
an estimate of the cost of a complete allocation is used as
pruning rules in a branch and bound formulation to compute
the task assignment. Our problem differs from [21] in that
the cost of an allocation cannot be estimated beforehand, the
tasks and hence the clustering approach are different.

III. PROBLEM DESCRIPTION

A. Mathematical Preliminaries

Let W = [0,L1]× [0,L2]× ·· ·× [0,Lν] ⊂ Rν denote a ν-
dimensional workspace that is to be explored by the robots.
Each robot has an (identical) n-dimensional state space Q =
W ×V (n≥ ν). V is comprised of the robot state components,
such as velocities or orientations, that does not affect what
the sensor sees. Let qi : [0,T]→ Q denote a trajectory of
the ith robot in its state space with T ∈ R+ representing the
time horizon. Let the set of all state space trajectories be H.
Let P : Q→ W project the state space into the workspace.
The robots have deterministic dynamics given by q̇i(t) =
f (qi(t),ui(t)), where ui(t) ∈ Rm is the control input of the
ith robot.

Let c(x,qi) : W ×H → [0,1] denote the time-averaged
statistics of a trajectory qi, which is defined as:

c(x,qi) =
1
T

∫ T

0
δ (x−P(qi(τ)))dτ, (1)

where δ is a Dirac function. Let φ : W → R denote a static
information map that describes the amount of information
at each location in the workspace. In this work, each infor-
mation map is a probability distribution with

∫
W dφ = 1 and

φ(x)≥ 0,∀x ∈W . An ergodic metric [10] for a trajectory qi

and an information map φ is defined as:

E (φ ,qi)=
K

∑
k=0

λk(ck−FCk)
2 (2)

=
K

∑
k=0

λk

(
1
T

∫ T

0
Fk(q(τ))dτ−FCk

)2

where (i) FCk =
∫
W φ(x)Fk(x)dx represents the kth

Fourier coefficient of the information map, Fk(x) =
1
hk

Πν
j=1 cos(k jπx j

L j
) is the cosine basis function for index k ∈

Nν and K is the number of Fourier bases considered, (ii) ck
denotes the kth Fourier coefficient of c(x,qi), (iii) hk denotes
the normalization factor as defined in [10], and (iv) λk =
(1+ ||k||2)− ν+1

2 denotes the weight for each corresponding
Fourier coefficient.

Consider a set Φ of M information maps and a set R of
N agents with M ≥ N. Let A denote the set of all possible
allocations of agents to maps. Each allocation is a surjective
function A : Φ→ R. Let h(r,A) be the set of maps assigned
to robot r by allocation A ∈A .

A scalarized information map combines a set S of s
information maps, using weights wi for each map, into a
single map on which ergodicity can be optimized:

φS =
∑

s
i=1 wiφi

∑
s
i=1 wi

(3)

B. Problem Formulation

Each problem has N agents tasked to cover a domain
subject to M information maps that span the same physical
region, M ≥ N. We present results for identical forward-
moving-only differential-drive robots, varying only in initial
position, with W = [0,100]× [0,100] and Q = W ×SO{2}.
The dynamics for the ith robot are shown in (4), in which
ν = 2,n = 3,m = 2.

q̇i = f (qi(t),ui(t)) =

vicos(θi(t))
visin(θi(t))

α ∗ωi

 (4)

where,[vi,ωi] is the control input for robot i, α is a constant
and qi(t) = [xi(t),yi(t),θi(t)] is the state of robot i at time t.

Let q∗r (A) be the trajectory (satisfying the dynamics above)
that minimizes ergodicity on the scalarization of the maps
assigned to robot r by allocation A:

q∗r (A)=argmin
q∈H

E (φh(r,A),q) (5)

s.t. q(0) = qr(0)

q∗r (A) is obtained in practice via trajectory optimization on
the scalarized information map as in [4] with all maps
weighted equally. Then the allocation optimization problem
can be stated as follows:

argmin
A∈A

max
φ∈Φ

E (φ ,q∗A(φ)(A)) (6)

which finds the allocation for which the map with the largest
ergodicity has the smallest achievable ergodicity.

IV. METHOD

We consider three baseline approaches explained further in
Section V-A. One approach involves optimizing a single joint
trajectory for all agents on the average of all the maps, which
may not be optimal for individual maps. Another approach
is a suboptimal greedy allocation method that assigns each
agent to a map based on the information around the agent.
The optimal solution can be found by exhaustive search, but
this is not practical for larger numbers of agents and maps.
To tackle this we present a branch and bound formulation.

A. Branch and bound approach

The branch and bound algorithm is commonly used in
literature to speed up the exhaustive search in combinatorial
problems such as equation (6). It constructs a tree structure
and uses bounds to eliminate sub-problems that cannot
contain the optimal solution. In a minimization problem, if
the cost of a sub-problem is greater than the current best
cost (upper bound), this sub-problem can be eliminated. In
this approach, we leverage the minmax metric to construct
a branch and bound algorithm that reduces the number
of possible allocations to be checked to find the optimal
allocation. The formulation is described in Algorithm 1.

The algorithm begins by computing an incumbent solution
using the greedy allocation described in Section V-A.2 (Step
1). For this incumbent allocation, the ergodic trajectory for
each agent is computed using (5), and the resulting individual
ergodicities (using getIndvErg()) on the information maps
are computed using (2) (Steps 2,3). The maximum of the
individual ergodicities is set as the initial upper bound for
the branch and bound algorithm (Step 4).

The algorithm works on a tree structure where each node
corresponds to an allocation of maps to one agent. It first
creates a root node with a null allocation (Step 5). Each
subsequent level of the tree contains nodes corresponding to
possible allocations of maps to one agent. Hence, the depth
of the tree generated is equal to the number of agents in
the problem, and a path from the root node to a leaf node
corresponds to one complete allocation.

For every node in the tree, the individual ergodicities on
the maps are computed using equations (5) and (2) (Step 12).
If the maximum of the individual ergodicities is greater than
the current upper bound, any solution containing this partial
allocation will have a minmax metric greater than the current
upper bound, and hence the node is pruned (Steps 13−15).
Whenever a complete solution is obtained, the upper bound
is updated to facilitate more node pruning (Steps 17−24).

On the tested problems this branch and bound algorithm
achieves an average speedup of 16 times compared to the
exhaustive search algorithm while maintaining optimality.
However, the branching factor is equal to the size of the
power set of the number of unassigned information maps and
it overlooks the similarity between information maps while
allocating agents. To this end, we present an approach based
on clustering to reduce the size of the allocation search space
and thereby significantly reduce the runtime of the algorithm.

Algorithm 1: Branch and Bound Algorithm
Data: Information maps: Φ = {φ1, · · · ,φM}, Agent

start positions: S0 = {s1, · · · ,sN}
Result: Optimal allocation scheme

1 incumbent ← GreedyAllocation(Φ, S0);
2 best alloc ← incumbent;
3 indv erg ← getIndvErg(incumbent,S0);
4 UB ← max(indv erg);
5 root node ← /0;
6 candidate nodes ← [root];
7 for i ∈ [1,N] do
8 new nodes ← /0
9 for n ∈ candidate nodes do

10 allocs ← Possible assignments of maps left
for agent i;

11 for alloc ∈ allocs do
12 indv erg ← getIndvErg(alloc,si);
13 if max(indv erg) >UB then
14 continue; // Prune
15 end
16 new nodes.append(alloc);
17 if i == N then
18 new alloc ← path from root to node;
19 new UB ←

max(getIndvErg(new alloc,S0));
20 if new UB <UB then
21 UB ← new UB;
22 best alloc ← new alloc;
23 end
24 end
25 end
26 end
27 candidate nodes ← new nodes;
28 end
29 return best alloc

B. Branch and bound with similarity clustering

This approach is motivated by the fact that if two infor-
mation maps are similar, then a single agent can be assigned
both information maps. We define the similarity (simkl)
between two information maps φk and φl to be the norm of
the difference in the Fourier coefficients of the information
maps as shown in (7) [10][4].

simkl = ∥FCk−FCl∥ (7)

where, FCi and FC j are the Fourier coefficients of φk and
φl respectively. The information maps are then clustered
based on this similarity metric using K-means clustering.
The number of clusters is picked using the kneedle algorithm
[22], which identifies the points of maximum curvature on a
dataset while ensuring it is greater than or equal to N. We
then follow the branch and bound algorithm as described
in Algorithm 1, except now, each level corresponds to the
possible allocations of clusters to one agent. The tree thus

(a) Information maps (b) Scalarized information map
Fig. 2: (a) Example problem with two maps and two agents
R (red) and G (green) with specified start position and
zero orientation, (b) Trajectories of agents on the scalarized
information map (maps)

Method Ergodicity evaluated on
Scalarized Map Map 1 Map 2

JTO 0.0079101 0.2536889 0.1626450
Greedy Allocation - 0.0009996 0.0009993

TABLE I: Individual ergodicities on maps in Fig 2a using
joint trajectory optimization (JTO) and greedy allocation

formed has the same depth but has a lower branching factor
than the branch and bound approach.

V. KEY RESULTS AND ANALYSIS

A. Baseline Methods and Implementation

1) Joint Trajectory Optimization (JTO): We adapt our
prior work in single-agent multi-objective ergodic search [4]
to multiple agents, in a similar way as in [10], by optimizing
a concatenated trajectory of all agents for the ergodic metric
on a scalarization of all maps with wi = 1 in equation (3).

For each agent, i, consider a trajectory qi(t) of length T .
The concatenated trajectory of length NT can be represented
as q(t) = [q1,q2, · · · ,qN]

′
. The concatenated trajectory is

then optimized to minimize the ergodic metric (E (φΦ,q)),
calculated using equation (2). This strategy is implemented
on an example problem with two information maps and two
agents with random start positions, as shown in Fig. 2a. The
resulting trajectories of the two agents and the individual
ergodicities are shown in Fig. 2b and Table I, respectively.

Since it is a joint trajectory optimization, the agents
naturally divide the high information regions among them.
This seems favorable, however, since the agents are trying to
consider all the M maps simultaneously, the best ergodicity
it can achieve on each map without compromising others
lies on the Pareto optimal front by definition. A visual
representation of this limitation can be seen in Fig. 3 where
agents spend a lot of time in low-information regions of
one map, indicated by the portion of the trajectory in the
white box, as that region spatially corresponds to a high
information region on another map. This problem can be
overcome by allocating these conflicting maps instead of
having each agent consider all the maps.

2) Greedy Allocation: The greedy baseline is presented
in algorithm 2. For each agent and information map combi-
nation, the amount of information inside an arbitrary-sized
window centered on the agent in that information map is
computed as the score of that agent-map combination (Steps
3− 7). The agent with the maximum score on a map is
assigned to that map unless this would leave more unassigned

Fig. 3: Agent trajectories on the individual maps in Fig. 2a

Algorithm 2: GreedyAllocation
Data: Information maps: Φ = {φ1, · · · ,φM}, Agent

start positions: S0 = {s1, · · · ,sN}
Result: Allocation Scheme

1 scores ← zero matrix(M,N);
2 W ← window centered on each start position;
3 for φi ∈Φ do
4 for s j ∈ S0 do
5 scores[i][j] ← ∑x,y∈W j φi(x,y);
6 end
7 end
8 allocation ← {};
9 for i ∈ [1,M] do

10 allocation[i] ← getBestAgent(scores[i]);
11 end

agents than maps, in which case the next highest score is
assigned. This ensures all agents are assigned at least one
map (implemented as getBestAgent(scores) in Step 10). This
is tested on the example in Fig. 2a, and the trajectories
obtained from that allocation are plotted in Fig. 4. The agents
now spend less time in areas of low information. It can be
seen from Table I that the individual maps are better covered
when the agents are explicitly allocated. Though the greedy
allocation performs better than JTO, it does not guarantee an
optimal allocation as defined in Section III-A.

3) Exhaustive Search: An optimal baseline is an exhaus-
tive search over A . The algorithm iterates through all pos-
sible allocations for the given set of agents and information
maps. For each allocation, the individual ergodicities on
the information maps are computed. It is worth noting that
when an agent is assigned more than one information map,
we scalarize the maps using equal weights, but this can be
adapted according to user/application requirements. Finally,
the optimal allocation is chosen as described in equation (6).

Fig. 4: Trajectories obtained using a greedy allocation of
agents green and red to map1 and map2, respectively

Fig. 5: Runtime comparison of all approaches on test cases
with 4 agents and 4 to 11 maps as indicated by M

B. Numerical Results

The effectiveness of the proposed branch and bound (BB)
algorithm was tested on 100 and 47 randomly generated
test cases with 3 and 4 agents, respectively. Each test case
contained 3 to 11 information maps (objectives) and a
random start pose for each of the agents. Each information
map was modeled as a mixture of Gaussian distributions
with the number of Gaussian distributions being uniformly
distributed in the range 1 to 6. Each Gaussian peak had a
mean and deviation randomly sampled between 0.05 to 0.8
and 0.01 and 0.05 respectively along both the x and y axis.
The branch and bound algorithm was compared against (a)
Exhaustive Search, (b) Greedy Allocation, and (c) Multi-
agent Multi-target task allocation [8] and (d) Branch and
bound with clustering. The exhaustive search was run with
a net time limit of 100 hr. The approaches are evaluated
against the branch and bound algorithm in terms of runtime
and the difference in the minmax metric. The results for test
cases with 4 agents are shown in Table II.

C. Comparison of BB and Exhaustive Search

The branch and bound algorithm finished solving all the
test cases within 100 hr for both 3 and 4 agents while the
exhaustive search algorithm solved only 4 test cases with 3
agents within 100 hr. Thus, the branch and bound algorithm
described in Section IV-A achieves an average speedup of
16 times while maintaining optimal allocation.

D. Comparison BB and Greedy Allocation

The greedy allocation, on average, showed 89.62% reduc-
tion in runtime compared to the branch and bound algorithm.
However, the minmax metric is higher compared to the
branch and bound approach, as shown in Table II, as the
approach only takes information in the local neighborhood
of agents for task assignment. The comparison of runtime for
the greedy algorithm and the branch and bound algorithm for
test cases with 4 agents is shown in Fig. 5.

E. Comparison BB and Distance-based assignment

For this comparison, the information maps in a test case
are clustered as described in Section IV-B but assigned based
on distance as in [8]. The peaks on the average of the maps

Average Percentage Average

Method Increase in
minmax metric

Improvement in
Runtime

Runtime
(s)

Increase in
minmax metric

Maximum difference
in minmax metric

Greedy Allocation 330.01% 89.62% 91.4 0.1029 1.3778
Distance-based

Allocation 239.72% 94.85% 23.9 0.0722 1.3778

Branch and bound with
similarity clustering 53.05% 77.97% 123.4 0.0148 0.1138

TABLE II: Comparing runtime and minmax metric against the branch and bound algorithm (optimal)

in a cluster are identified. The agents are assigned to the
clusters based on the distance of the agent to the centroid
of these peaks. The algorithms are compared on runtime
as shown in Fig. 5. Assigning based on distance shows a
94.85% improvement in runtime compared to the branch and
bound algorithm. However, the minmax metric is higher for
the former as the approach considers visiting peaks in the
information map rather than ergodic coverage.

F. Comparison BB and BB with clustering

As indicated in Table II, the branch and bound approach
with clustering shows 77.97% lesser runtime compared to
one without clustering (32 times faster than exhaustive
search). Even though branch and bound with clustering is
not exhaustive the difference in the minmax metric of its
solution had an average difference and standard deviation of
only 0.0148 and 0.1138 compared to the optimal solution.
The runtime for the algorithms on test cases with 4 agents
is shown in Fig. 5.

VI. CONCLUSION AND FUTURE WORK

The multi-agent multi-objective ergodic search problem is
an allocation problem that is NP-hard to solve optimally.
An exhaustive search algorithm, while optimal in allocation,
quickly becomes intractable in terms of runtime as the
number of agents and maps increases. We thus present a
branch and bound algorithm that helps reduce the average
runtime by a factor of 16 while still providing the optimal
allocation scheme. Further, we present an approach to cluster
similar information maps and assign agents to these clusters.
This method is 32 times faster than the exhaustive search,
and it achieves a better trade-off between solution quality
and runtime. Future directions include adapting the task al-
location scheme to heterogeneous agents. Additional metrics
such as workload division and agent-specific task allocation
can also be investigated.

REFERENCES

[1] J. Berger, N. Lo, and M. Noel, “A new multi-target, multi-agent
search-and-rescue path planning approach,” International Journal of
Computer and Information Engineering, vol. 8, no. 6, pp. 978 – 987,
2014.

[2] F. M. D. Fave, S. Canu, L. Iocchi, D. Nardi, and V. A. Ziparo, “Multi-
objective multi-robot surveillance,” 2009 4th International Conference
on Autonomous Robots and Agents, pp. 68–73, 2000.

[3] S. G. Satpute, P. Bodin, and G. Nikolakopoulos, “Cooperative planning
for multi-site asteroid visual coverage,” Advanced Robotics, vol. 35,
no. 21-22, pp. 1332–1346, 2021.

[4] Z. Ren, A. K. Srinivasan, H. Coffin, I. Abraham, and H. Choset, “A
local optimization framework for multi-objective ergodic search,” in
Robotics: Science and Systems XVIII. Robotics: Science and Systems
Foundation, jun 2022.

[5] B. P. Gerkey and M. J. Matarić, “A formal analysis and taxonomy of
task allocation in multi-robot systems,” The International Journal of
Robotics Research, vol. 23, pp. 939 – 954, 2004.

[6] G. A. Korsah, A. Stentz, and M. B. Dias, “A comprehensive taxonomy
for multi-robot task allocation,” The International Journal of Robotics
Research, vol. 32, no. 12, pp. 1495–1512, 2013.

[7] L. Bramblett, R. Peddi, and N. Bezzo, “Coordinated multi-agent
exploration, rendezvous, and task allocation in unknown environments
with limited connectivity,” in 2022 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2022, pp. 12 706–12 712.

[8] S. Biswas, S. G. Anavatti, and M. A. Garratt, “A time-efficient co-
operative path planning model combined with task assignment for
multi-agent systems,” Robotics, vol. 8, no. 2, 2019.

[9] C. Ramirez Atencia, J. Del Ser, and D. Camacho, “Weighted strategies
to guide a multi-objective evolutionary algorithm for multi-uav mission
planning,” Swarm and Evolutionary Computation, vol. 44, pp. 480–
495, 2019.

[10] G. Mathew and I. Mezić, “Metrics for ergodicity and design of ergodic
dynamics for multi-agent systems,” Physica D: Nonlinear Phenomena,
vol. 240, no. 4, pp. 432–442, 2011.

[11] L. M. Miller and T. D. Murphey, “Trajectory optimization for con-
tinuous ergodic exploration,” in 2013 American Control Conference,
2013, pp. 4196–4201.

[12] E. Ayvali, H. Salman, and H. Choset, “Ergodic coverage in constrained
environments using stochastic trajectory optimization,” 2017.

[13] I. Abraham, A. Prabhakar, and T. D. Murphey, “An ergodic measure
for active learning from equilibrium,” IEEE Transactions on Automa-
tion Science and Engineering, vol. 18, no. 3, pp. 917–931, 2021.

[14] L. M. Miller, Y. Silverman, M. A. MacIver, and T. D. Murphey,
“Ergodic exploration of distributed information,” IEEE Transactions
on Robotics, vol. 32, no. 1, pp. 36–52, 2016.

[15] I. Abraham and T. D. Murphey, “Decentralized ergodic control:
Distribution-driven sensing and exploration for multiagent systems,”
IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 2987–2994,
Oct 2018.

[16] A. Mavrommati, E. Tzorakoleftherakis, I. Abraham, and T. D. Mur-
phey, “Real-time area coverage and target localization using receding-
horizon ergodic exploration,” 2017.

[17] Z. Ren, A. K. Srinivasan, B. Vundurthy, I. Abraham, and H. Choset,
“A pareto-optimal local optimization framework for multiobjective
ergodic search,” IEEE Transactions on Robotics, pp. 1–12, 2023.

[18] B. Gerkey and M. Mataric, “Multi-robot task allocation: analyzing the
complexity and optimality of key architectures,” in 2003 IEEE Interna-
tional Conference on Robotics and Automation (Cat. No.03CH37422),
vol. 3, 2003, pp. 3862–3868 vol.3.

[19] J. Butzke and M. Likhachev, “Planning for multi-robot exploration
with multiple objective utility functions,” in 2011 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 2011, pp. 3254–
3259.

[20] H. Karami, A. Thomas, and F. Mastrogiovanni, Task Allocation for
Multi-robot Task and Motion Planning: A Case for Object Picking in
Cluttered Workspaces, 01 2022, pp. 3–17.

[21] Y.-C. Ma, T.-F. Chen, and C.-P. Chung, “Branch-and-bound task
allocation with task clustering-based pruning,” Journal of Parallel and
Distributed Computing, vol. 64, no. 11, pp. 1223–1240, 2004.

[22] V. Satopaa, J. Albrecht, D. Irwin, and B. Raghavan, “Finding a
”kneedle” in a haystack: Detecting knee points in system behavior,” in
2011 31st International Conference on Distributed Computing Systems
Workshops, 2011, pp. 166–171.

	Introduction
	Related Works
	Ergodic Coverage
	Multi-agent Multi-objective Task Allocation and Path Planning

	Problem Description
	Mathematical Preliminaries
	Problem Formulation

	Method
	Branch and bound approach
	Branch and bound with similarity clustering

	Key Results and Analysis
	Baseline Methods and Implementation
	Joint Trajectory Optimization (JTO)
	Greedy Allocation
	Exhaustive Search

	Numerical Results
	Comparison of BB and Exhaustive Search
	Comparison BB and Greedy Allocation
	Comparison BB and Distance-based assignment
	Comparison BB and BB with clustering

	Conclusion and Future Work
	References

